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Depression is a heterogeneous clinical syndrome that is diagnosed 
when a patient reports at least five of nine symptoms. This allows for 
several hundred unique combinations of changes in mood, appetite, 
sleep, energy, cognition and motor activity. Such remarkable heteroge-
neity reflects the consensus view that there are multiple forms of depres-
sion, but their neurobiological basis remains poorly understood1,2. 
So far, most efforts to characterize depression subtypes and develop 
diagnostic biomarkers have begun by identifying clusters of symptoms 
that tend to co-occur, and by then testing for neurophysiological cor-
relates. These pioneering studies have defined atypical, melancholic, 
seasonal and agitated subtypes of depression associated with charac-
teristic changes in neuroendocrine activity, circadian rhythms and 
other potential biomarkers3–5. Still, the association between clinical  
subtypes and their biological substrates is inconsistent and variable 
at the individual level, and unlike diagnostic biomarkers in other 
areas of medicine, they have not yet proven useful for differentiating 
individual patients from healthy controls or for reliably predicting 
treatment response at the individual level.

An alternative to subtyping patients on the basis of co-occurring  
clinical symptoms is to identify neurophysiological subtypes, or 
biotypes, by clustering subjects according to shared signatures  
of brain dysfunction6. This type of approach has already begun to 
yield insights into how differing biological mechanisms may give  
rise to overlapping, heterogeneous clinical presentations of psy-
chotic disorders6,7. Neuroimaging biomarkers of abnormal brain 
function have proven utility in the assessment of pain8 and have also 
shown promise for depression, for both the prediction of treatment 
response9–13 and treatment selection14. Resting-state fMRI (rsfMRI)  
is an especially useful modality because it can be used easily in  
diverse patient populations to quantify functional network connec-
tivity in terms of correlated, spontaneous MR signal fluctuations. 
Depression is associated with dysfunction and abnormal functional 
connectivity in frontostriatal and limbic brain networks15–20, in 
accordance with morphological and synaptic changes in chronic stress 
models in rodents21–24. These studies raise the intriguing possibility 
that fMRI measures of connectivity could be leveraged to identify 
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Biomarkers have transformed modern medicine but remain largely elusive in psychiatry, partly because there is a weak 
correspondence between diagnostic labels and their neurobiological substrates. Like other neuropsychiatric disorders,  
depression is not a unitary disease, but rather a heterogeneous syndrome that encompasses varied, co-occurring symptoms  
and divergent responses to treatment. By using functional magnetic resonance imaging (fMRI) in a large multisite sample  
(n = 1,188), we show here that patients with depression can be subdivided into four neurophysiological subtypes (‘biotypes’) 
defined by distinct patterns of dysfunctional connectivity in limbic and frontostriatal networks. Clustering patients on this basis 
enabled the development of diagnostic classifiers (biomarkers) with high (82–93%) sensitivity and specificity for depression 
subtypes in multisite validation (n = 711) and out-of-sample replication (n = 477) data sets. These biotypes cannot be 
differentiated solely on the basis of clinical features, but they are associated with differing clinical-symptom profiles. They also 
predict responsiveness to transcranial magnetic stimulation therapy (n = 154). Our results define novel subtypes of depression 
that transcend current diagnostic boundaries and may be useful for identifying the individuals who are most likely to benefit  
from targeted neurostimulation therapies. 
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novel subtypes of depression with stronger neurobiological correlates 
that predict treatment responsiveness.

To this end, we developed a method for defining depression  
subtypes by clustering subjects according to distinct, whole-brain 
patterns of abnormal functional connectivity in resting-state net-
works, unbiased by assumptions about the involvement of particular 
brain regions, and tested it in a large, multisite data set. Our analyses 
revealed four biotypes that were defined by homogeneous patterns 
of dysfunctional connectivity in frontostriatal and limbic networks, 
and that could be diagnosed with high sensitivity and specificity  
in individual subjects. Importantly, these biotypes were also prognos-
tically informative, predicting which patients responded to repetitive 
transcranial magnetic stimulation (TMS), a targeted neurostimula-
tion therapy.

RESULTS
Frontostriatal and limbic connectivity define four  
depression biotypes
We began by designing and implementing a preprocessing procedure 
(Online Methods) to control for motion-, scanner- and age-related 
effects in a multisite data set that comprised rsfMRI scans for 711 sub-
jects (the ‘training data set’, n = 333 patients with depression; n = 378 
healthy controls). No subjects had comorbid substance-abuse disorders, 
and patients and controls were matched for age and sex. Data that support 
our approach to controlling for motion-related Blood-oxygen-level 
dependent (BOLD) signal effects, a particularly important source 
of rsfMRI artifact25–27, are presented in Supplementary Figure 1.  
After co-registering the functional volumes to a common (Montreal 
Neurological Institute (MNI)) space, we applied an extensively vali-
dated parcellation system28 to delineate 258 functional network nodes 
that spanned the whole brain and had stable signals across all sites 
and scans in this data set (Fig. 1a). Next, we extracted BOLD signal  
residual time series and calculated correlation matrices between 
each node, which provided an unbiased estimate of the whole-brain  
architecture of functional connectivity in each subject (Fig. 1b).

Each correlation matrix comprised 33,154 unique connectivity 
features, which thus necessitated a protocol for selecting a subset of 
relevant, nonredundant connectivity features for use in clustering. We 
reasoned that biologically meaningful depression subtypes would be best 
characterized by a subset of connectivity features that were significantly 
correlated with depressive symptoms. Therefore, to select connectivity 
features for use in clustering, we used canonical correlation analysis 
(Online Methods) to define a low-dimensional representation of con-
nectivity features that were associated with weighted combinations of 
clinical symptoms, as quantified by the 17-item Hamilton Depression 
Rating Scale (HAMD), a commonly used, clinician-rated assessment. 
To ensure that cluster discovery was not confounded by site-related 
differences in subject recruitment criteria or by other unidentified vari-
ables, the cluster-discovery analysis was restricted to a subset of patients 
(the ‘cluster-discovery subset’, n = 220 of the 333 patients with depres-
sion) from two sites with identical inclusion and exclusion criteria and 
statistically equivalent depression-symptom scores (see Supplementary 
Tables 1–3 for details). This analysis identified linear combinations of 
connectivity features (analogous to principal components) that pre-
dicted two distinct sets of depressive symptoms (Fig. 1c,d). The first 
connectivity component (canonical variate) defined a combination of 
predominantly frontostriatal and orbitofrontal connectivity features that 
were correlated with anhedonia and psychomotor retardation (Fig. 1c,  
Supplementary Fig. 2 and Supplementary Table 4). The second com-
ponent defined a distinct set of predominantly limbic connectivity fea-
tures involving the amygdala, ventral hippocampus, ventral striatum, 
subgenual cingulate and lateral prefrontal control areas, and that was 
correlated with anxiety and insomnia (Fig. 1d). Thus, this empirical, 
data-driven approach to feature selection and dimensionality reduc-
tion identified two sets of functional connectivity features that were 
correlated with distinct clinical-symptom combinations.

We then tested whether abnormalities in these connectivity feature 
sets tended to cluster in patient subgroups. Multiple statistical learn-
ing approaches are available for discovering notable structure in large 
data sets (‘unsupervised learning’). Here we chose to use hierarchical 

Figure 1  Canonical correlation analysis (CCA) and hierarchical clustering define four connectivity-based biotypes of depression. (a) Data analysis 
schematic and workflow. After preprocessing, BOLD signal time series were extracted from 258 spherical regions of interest (ROIs) distributed across 
the cortex and subcortical structures. The schematics (top) show lateral (left) and medial (right) views of right-hemisphere ROIs projected onto 
an inflated cortical surface and colored by functional network (lower left). Left-hemisphere ROIs (data not shown) were similar. For each subject, 
whole-brain functional-connectivity matrices were generated by calculating pairwise BOLD signal correlations between all ROIs, as in this example of 
correlated signals (r2 = 0.88) for DLPFC (solid line) and PPC (dashed line) nodes of the FPTC network in a representative subject. (b) Whole-brain, 
258 × 258 functional-connectivity matrix averaged across all healthy controls (n = 378 subjects). z = Fischer transformed correlation coefficient. 
(c,d) CCA was used to define a low-dimensional representation of depression-related connectivity features and identified an “anhedonia-related” 
component (canonical variate; c) and an “anxiety-related” component (d), represented by linear combinations of connectivity features that were 
correlated with linear combinations of symptoms. The scatterplots in c and d illustrate the correlation between low-dimensional connectivity scores 
and low-dimensional clinical scores for the anhedonia-related (r2 = 0.91) and anxiety-related components (r2 = 0.95), respectively (P < 0.00001, 
n = 220 patients with depression). To the left of each scatterplot, clinical score loadings (i.e., the Pearson correlation coefficients between specific 
symptoms and the anhedonia- or anxiety-related clinical score (canonical variate)) are depicted for those symptoms with the strongest loadings (HAMD 
item #, indicated by numbers in superscript; for all loadings on all symptoms, see Supplementary Fig. 2). Below each scatterplot, connectivity score 
loadings are summarized by depicting the neuroanatomical distribution of the 25 ROIs (top 10%) that were most highly correlated with each component 
(summed across all significantly correlated connectivity features for a given ROI), colored by network, as in a. Projections to the medial wall map are  
for both left- and right-hemisphere ROIs. (e) Hierarchical clustering analysis. The height of each linkage in the dendrogram represents the distance  
between the clusters joined by that link. For reference, the dashed line denotes 20 times the mean distance between pairs of subjects within a cluster. 
For analyses of additional cluster solutions and further discussion, see Supplementary Figure 3. (f) Scatterplot for four clusters of subjects along 
dimensions of anhedonia- and anxiety-related connectivity. Gray data points indicate subjects with ambiguous cluster identities (edge cases, cluster 
silhouette values < 0; n = 15, or 6.8% of all subjects). ACC, anterior cingulate cortex; amyg, amygdala; antPFC, anterior prefrontal cortex; a.u., arbitrary 
units; AV, auditory/visual networks; CBL, cerebellum; COTC, cingulo-opercular task-control network; D/VAN, dorsal/ventral attention network; DLPFC, 
dorsolateral prefrontal cortex; DMN, default-mode network; DMPFC, dorsomedial prefrontal cortex; FPTC, frontoparietal task-control network; GP, globus 
pallidus; LIMB, limbic; MR, memory retrieval network; NAcc, nucleus accumbens; OFC, orbitofrontal cortex; PPC, posterior parietal cortex; precun, 
precuneus; sgACC, subgenual anterior cingulate cortex; SS1, primary somatosensory cortex; SN, salience network; SSM, somatosensory/motor networks; 
subC, subcortical; thal, thalamus; vHC, ventral hippocampus; VLPFC, ventrolateral prefrontal cortex; VMPFC, ventromedial prefrontal cortex;  
vStr, ventral striatum; n.s., not significant. See Supplementary Table 4 for MNI coordinates for ROIs in b and c.
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clustering—a standard approach that has been used extensively in the 
biological sciences29,30—to discover clusters of patients, by assign-
ing them to nested subgroups with similar patterns of connectivity 
(Online Methods). This analysis revealed four patient clusters defined 
by distinct and relatively homogeneous patterns of connectivity along 
these two dimensions (Fig. 1e,f) and comprising 23.6%, 22.7%, 
20.0% and 33.6% of the 220 patients with depression, respectively.  

This four-cluster solution was optimal for defining relatively homogene-
ous subgroups that were maximally dissimilar from each other (maxi-
mizing the ratio of between-cluster to within-cluster variance), while 
ensuring individual cluster sample sizes that provided sufficient statisti-
cal power to detect biologically meaningful differences (Supplementary 
Fig. 3). Therefore, we focused our subsequent analyses on character-
izing and validating these four putative subtypes of depression.
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Biotype-specific clinical profiles predicted by frontostriatal and 
limbic network dysfunction
To understand the neurobiological basis of these biotypes, we began 
by testing for differences in the whole-brain architecture of functional 
connectivity between patients (n = 220) and age-, sex- and site-matched 
healthy controls (n = 378) and for connectivity features that differed 
between patient subgroups. We observed a common neuroanatomical 
core of pathology underlying all four biotypes and encompassing areas 
spanning the insula, orbitofrontal cortex, ventromedial prefrontal 
cortex and multiple subcortical areas (Fig. 2a,b and Supplementary  
Table 5)—all of which have been implicated in depression previ-
ously15–20. This led us to ask whether these connectivity features pre-
dicted the severity of ‘core’ symptoms that were present in almost all 
patients, regardless of biotype. We found that, of the 17 symptoms 
quantified by the HAMD, three were present in almost all patients with 
depression (>90%): mood (“feelings of sadness, hopelessness, help-
lessness,” 97.1%), anhedonia (96.7%) and anergia or fatigue (93.9%). 
Across subjects, regardless of biotype, abnormal connectivity in this 
shared neuroanatomical core (as indexed by the first principal com-
ponent in a principal-component analysis (PCA)) was correlated with 
severity scores on these three symptoms (Fig. 2c; r = 0.72–0.82).

In addition, we found that, superimposed on this shared patho-
logical core, distinct patterns of abnormal functional connectivity 
differentiated the four biotypes (Fig. 2d,e) and were associated with 
specific clinical-symptom profiles (Fig. 2f). For example, as compared 
to controls, reduced connectivity in frontoamygdala networks, which 
regulate fear-related behavior and reappraisal of negative emotional 
stimuli31–33, was most severe in biotypes 1 and 4, which were char-
acterized in part by increased anxiety. By contrast, hyperconnectiv-
ity in thalamic and frontostriatal networks, which support reward 
processing, adaptive motor control and action initiation20,34–37, were 
especially pronounced in biotypes 3 and 4 and were associated with 
increased anhedonia and psychomotor retardation. And reduced 
connectivity in anterior cingulate and orbitofrontal areas supporting 
motivation and incentive-salience evaluation38–40 was most severe 
in biotypes 1 and 2, which were characterized partly by increased 
anergia and fatigue.

Importantly, although the connectivity-based biotypes revealed in 
our analysis were associated with differences in clinical symptoms, 
they did not simply reflect differences in overall depression severity. 

Although overall depression severity scores were modestly but signifi-
cantly decreased in biotype 2 as compared to the other three groups 
(by 15–16%), there were no significant differences in severity between 
biotypes 1, 3 and 4 (Fig. 2g; see Supplementary Fig. 4 for convergent 
findings in independent data acquired from subjects not included 
in the cluster-discovery analysis). Furthermore, they did not simply 
recapitulate subtypes derived strictly from clinical-symptom measures; 
whereas clustering according to functional connectivity features in ran-
dom patient subsamples yielded stable clustering outcomes, clustering 
according to clinical symptoms yielded unstable outcomes with rela-
tively low longitudinal stability over time (Supplementary Fig. 5).

Functional connectivity biomarkers for diagnosing depression 
biotypes
By reducing diagnostic heterogeneity, we reasoned that clustering 
could be leveraged to develop classifiers for the diagnosis of depres-
sion biotypes solely on the basis of fMRI measures of functional 
connectivity, which have shown promise in smaller-scale, single-site 
studies of depression41–43 and other neuropsychiatric disorders44,45, 
but that have not performed as well when tested in multisite data 
sets44. To this end, we developed classifiers for each depression  
biotype, testing and optimizing standard, extensively used meth-
ods for brain parcellation, subject clustering, feature selection and  
classification to identify empirically the most successful approach to 
clustering and classification (Fig. 3a and Online Methods). Throughout, 
clustering analysis was performed in the same cluster-discovery sam-
ple (n = 220), whereas classification of patients versus controls was 
optimized in the full training data set (n = 333 patients; n = 378 con-
trols), and leave-one-out cross-validation and permutation testing 
were used to assess performance and significance (Supplementary 
Fig. 6; for additional analysis confirming the stability of cluster assign-
ments, see Supplementary Fig. 3d–f). The optimization process 
yielded progressive improvements in classifier performance (Fig. 3b).  
Support-vector machine (SVM) classifiers (using linear kernel func-
tions) performed best, yielding overall accuracy rates of up to 89.2% 
for the clusters characterized above, on the basis of connectivity 
features associated with the neuroanatomical areas summarized in 
Figure 3c–f. In cross-validation (leave-one-out), individual patients 
and healthy controls were diagnosed correctly with sensitivities of 
84.1–90.9% and specificities of 84.1–92.5% (Fig. 3g).

Figure 2  Connectivity biomarkers define depression biotypes with distinct clinical profiles. (a) Neuroanatomical distribution of the 25 ROIs (top 10%) with 
the most abnormal connectivity features shared by all four biotypes (summed across all connectivity features for a given ROI), identified using Wilcoxon 
rank–sum tests to test for connectivity features that were significantly abnormal in all four biotypes relative to healthy controls in data set 1 (n = 378). 
ROIs are colored by network, as in Figure 1a. (b) Heat maps depicting a pattern of abnormal connectivity (P < 0.05, false-discovery rate (FDR) corrected) 
shared by all four biotypes for the top 50 most abnormal ROIs, colored on the basis of Wilcoxon rank–sum tests comparing patients and controls, as  
in a. Warm colors represent increase and cool colors decrease in depression as compared to controls. (c) Correlations (r = 0.72–0.82, ***P < 0.001, 
Spearman) between shared abnormal connectivity features (as indexed by the first principal component (PC) of the features depicted in b and the severity 
of the core depressive symptoms. Insets depict the prevalence of each symptom. Symptom severity measures are z-scored with respect to controls 
and plotted as the mean for each quartile, ± s.e.m. (d) Neuroanatomical distribution of dysfunctional connectivity features that differed by biotype, as 
identified by Kruskal–Wallis analysis of variance (ANOVA) (P < 0.05, FDR corrected), summarized for the 50 ROIs (top ~20%) with the most biotype-
specific connectivity features (i.e., the 50 ROIs with the largest test statistic summed across all connectivity features, showing cluster specificity at 
a threshold of P < 0.05, FDR corrected). Nodes (ROIs) are colored to indicate the biotype with the most abnormal connectivity features and scaled 
to indicate how many connectivity features exhibited significant effects of biotype. (e) Heat maps depicting biotype-specific patterns of abnormal 
connectivity for the functional nodes illustrated in d, plus selected limbic areas, colored as in b. Green boxes highlight corresponding areas in each matrix 
discussed in the main text. (f) Biotype-specific clinical profiles for the six depressive symptoms that varied most significantly by cluster (P < 0.005, 
Kruskal–Wallis ANOVA). Symptom severities (HAMD) are z-scored with respect to the mean for all patients in the cluster-discovery set. See Supplementary 
Figure 4 for all 17 HAMD items and for replication in data from subjects left out of the cluster-discovery set. (g) Boxplot of biotype differences in overall 
depression severity (total HAMD score), in which boxes denote the median and interquartile range (IQR) and whiskers the minimum and maximum values. 
In f and g, asterisk (*) indicates significant difference from mean symptom severity rating for all patients (z = 0) at P < 0.05; error bars depict s.e.m.; n.s., 
not significant. Aud, auditory cortex; HC, hippocampus; lat PFC, lateral prefrontal cortex; lat OFC, lateral orbitofrontal cortex; MTG, middle temporal gyrus; 
PHC, parahippocampal cortex; PCC, posterior cingulate cortex; SSM, primary sensorimotor cortex (M1 or S1); STG, superior temporal gyrus; vis, visual cortex.  
Other abbreviations are as in Figure 1. See Supplementary Table 5 for Montreal Neurological Institute coordinates for ROIs in a and d.
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To further validate the biotypes, we asked whether biotype diagnosis 
(cluster membership) was stable over time by testing these classifiers on 
a subset of patients (n = 50) who received a second fMRI scan while they 
were actively experiencing depression, 4–6 weeks after the first scan-
ning session. We found that, overall, 90.0% of subjects were assigned 
to the same biotype in both scans (Fig. 3h; χ2 = 84.6, P < 0.0001).  
There were no significant between-group differences in age, medica-
tion usage or head motion during scanning, variables that may affect 
rsfMRI connectivity measures (Supplementary Fig. 7).

It is well established in the machine-learning literature that iterative 
training and cross-validation on the same data overestimate classi-
fier performance46, and other studies have raised questions about the 
capacity for classifiers trained on one data set at a single site to gener-
alize to data collected at multiple sites44. Therefore, we tested the most 
successful classifier for each depression biotype in an independent 
replication data set that consisted of 125 patients and 352 healthy con-
trols acquired from 13 sites, including five sites that were not included 
in the original training data set (Supplementary Table 3). To avoid 
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Figure 3  Functional connectivity biomarkers for diagnosing neurophysiological biotypes of depression. (a) Data analysis schematic and workflow (Online 
Methods for additional details). (b) Optimization of diagnostic-classifier performance (accuracy) across the indicated combinations of methods for 
parcellation, clustering and classification. *P < 0.005, as estimated by permutation testing (Online Methods). Double asterisk (**) indicate the best 
performing protocol for parcellation, clustering and classification, and the focus of all subsequent analyses. (c–f) The neuroanatomical locations of the 
nodes with the most discriminating connectivity features are illustrated for each biotype for the four-cluster solution denoted by the double asterisk in b,  
colored and scaled by summing the results of Wilcoxon rank–sum tests of patients as compared to controls across all connectivity features associated 
with that node. Red represents increased and blue decreased functional connectivity in depression. (g) Sensitivity and specificity by biotype for the 
most successful classifiers identified in b (**). Error bars depict 95% confidence interval for the mean accuracy across all iterations of leave-one-out 
cross-validation. (h) Reproducibility of cluster assignments in a second fMRI scan (n = 50) obtained 4–5 weeks after the initial scan (χ2 = 112.7,  
P < 0.00001). (i) Classifier performance in an independent, out-of-sample replication data set (n = 125 patients, 352 healthy controls). Cross-hatched 
bars depict classifier accuracy with more stringent data quality controls (Online Methods) and excluding equivocal classification outcomes  
(the 10% of subjects with the lowest absolute SVM classification scores). Error bars depict 95% confidence intervals.
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overestimating diagnostic sensitivity, only one classifier—the classi-
fier for the best-fitting biotype—was tested on each subject (Online 
Methods). Overall, 86.2% of subjects in this independent, out-of-
sample replication data set were correctly diagnosed, including >90% 
of patients in biotypes 3 and 4 (Fig. 3i; Supplementary Table 6). By 
implementing stricter data quality controls and by treating subjects 
with ambiguous classification outcomes (the lowest absolute SVM 
classification scores; Online Methods) as equivocal test results, as is 
common practice for biomarkers in other areas of medicine, these 
accuracy rates exceeded 95%.

Connectivity biomarkers predict responsiveness to rTMS
Treatment-response prediction is an important element of validating 
biomarkers and establishing potential for clinical actionability, and 
neuroimaging measures have already shown promise for predicting 
treatment response in depression9–14. Repetitive transcranial magnetic 
stimulation (rTMS) is a noninvasive neurostimulation treatment for 
medication-resistant depression that modulates functional connectiv-
ity in cortical networks47–49. Although the left dorsolateral prefrontal 
cortex is the most common target for stimulation48, recent studies 
have demonstrated efficacy for a dorsomedial prefrontal (DMPFC) 
target13, which raises the intriguing possibility that biotype differ-
ences in dysfunctional connectivity at the DMPFC target (Fig. 2d) 
site may give rise to differing treatment outcomes. To test this, we 
asked first whether the four depression biotypes were differentially 
responsive to rTMS in 124 subjects who received repetitive high-fre-
quency stimulation of the dorsomedial prefrontal cortex for 5 weeks, 
beginning shortly after their fMRI scan (Online Methods). Treatment 
response varied significantly with cluster membership (χ2 = 25.7,  
P = 1.1 × 10–5). rTMS was most effective for patients in biotype 1, 
82.5% of whom (n = 33/40) improved significantly (>25% HAMD 
reduction), as compared to 61.0% for biotype 3 (n = 25/41) and only 
25.0% and 29.6% for biotypes 2 (n = 4/16) and 4 (n = 8/27), respectively 
(see Fig. 4a,b full response rates (>50% reduction) and percentage  
change in depression severity by total HAMD score).

Next, we tested whether connectivity-based biotypes could be used 
to predict treatment response more effectively than clinical symptoms 
alone. To this end, we trained classifiers to differentiate responders and 
nonresponders using the same approach to feature selection, training 

and leave-one-out cross-validation. The most discriminating connec-
tivity features involved the dorsomedial prefrontal stimulation target 
and the left amygdala, left dorsolateral prefrontal cortex, bilateral orbit-
ofrontal cortex and posterior cingulate cortex (Fig. 4c; Supplementary 
Table 7). Connectivity between other neuroanatomical areas that were 
not directly stimulated by the rTMS protocol—including the ventro-
medial prefrontal cortex, thalamus, nucleus accumbens and globus 
pallidus—also predicted treatment response (Fig. 4d,e). Connectivity 
features predicted individual differences in the rTMS responsiveness 
with 78.3% accuracy in leave-one-out cross-validation (Fig. 4f,j). 
Classification according to connectivity features plus biotype diagnosis 
yielded the highest predictive accuracy (89.6%; Fig. 4g,j).

By contrast, clinical symptoms alone were not strong predictors of 
rTMS treatment responsiveness at an individual level. To test this, we 
trained classifiers to differentiate responders and nonresponders solely 
on the basis of clinical data. We found that clinical features (insom-
nia, anhedonia and psychomotor retardation by HAMD) were only 
modestly (62.6%) predictive of treatment responsiveness (Fig. 4h,j).  
Overall, classifiers based on connectivity features and biotype diagno-
sis significantly outperformed those based on clinical features alone  
(Fig. 4j; P < 0.005). Furthermore, just as we observed for diagnostic  
classifiers in Figure 3, accuracy rates could be improved further 
(>94%, Fig. 4j) by implementing stricter data quality controls and 
treating subjects with ambiguous classification outcomes as equivocal 
test results (Online Methods). Finally, to further evaluate predictive 
validity, we tested the best-performing classifier, which used a com-
bination of connectivity features and biotype diagnosis, in an inde-
pendent replication set (n = 30 subjects) and obtained comparable 
accuracy rates (87.5–92.6%; Fig. 4i,j). By contrast, subtyping subjects 
on the basis of clinical symptoms yielded highly variable, longitudi-
nally unstable clustering outcomes that failed to predict treatment 
response (Supplementary Fig. 5).

Depression biotypes transcend conventional diagnostic boundaries
Collectively, these findings show that our current diagnostic system 
merges groups of patients with at least four distinct patterns of abnor-
mal connectivity under a single diagnostic label—major depressive 
disorder. We concluded our study by testing whether the converse 
also occurs: that is, does our diagnostic system assign different  

Figure 4  Connectivity biomarkers predict differential antidepressant response to rTMS. (a) Differing response rates to repetitive transcranial  
magnetic stimulation (rTMS) of the dorsomedial prefrontal cortex across patient biotypes (clusters) in n = 124 subjects. Response rate indicates 
percentage of subjects showing at least a partial clinical response to rTMS (χ2 = 25.7, P = 1.1 × 10−5), defined conventionally as >25% reduction in 
symptom severity by HAMD. Full response rates (>50% reduction by HAMD, cross-hatched bars) also varied by biotype (χ2 = 22.9, P = 4.3 × 10–5).  
(b) Boxplot of percent improvement in depression severity by biotype (P = 1.79 × 10–6, Kruskal–Wallis ANOVA), in which boxes denote the median  
and interquartile range and whiskers the minimum and maximum up to 1.5 × the IQR, beyond which outliers are plotted individually. Percent 
improvement = total HAMD score before treatment – total HAMD score after treatment/total HAMD score before treatment. **P = 0.00001–0.002 
(Mann–Whitney), indicating significantly increased versus biotypes 2–4; *P = 0.007 (Mann–Whitney), indicating significantly increased versus biotype 4.  
(c) Functional connectivity differences in the DMPFC stimulation target in treatment responders versus nonresponders (Wilcoxon rank–sum tests, 
thresholded at P < 0.005). Warm colors represent increased and cool colors decreased functional connectivity in treatment responders as compared to 
nonresponders. The 12 ROIs depicted here were located within 3 cm of the putative DMPFC target site, estimated in a previously published report to be 
located at Talairach coordinates, x = 0, y = +30, z = +30 (ref. 13). (d) The neuroanatomical distribution of the most discriminating connectivity features 
for the comparison of rTMS responders versus non-responders, summarized by illustrating the locations of the 25 (top 10%) most discriminating 
ROIs indexed by summing across all significantly discriminating connectivity features and colored by functional network as in Figure 1a. The red 
arrows denote the rTMS target site in the two (lower) medial panels. (e) Heat maps depicting differences in functional connectivity in patients who 
subsequently improved after receiving rTMS (n = 70), as compared to those who did not (n = 54). (f–i) Confusion matrices depicting the performance  
of classifiers trained to identify subsequent treatment responders on the basis of the most discriminating connectivity features (f), connectivity  
features plus biotype diagnosis (g), clinical symptoms alone (h) or connectivity features plus biotype diagnosis in an independent replication set  
(i, n = 30 patients with depression). NR, nonresponder; R, responder. (j) Summary of performance (overall accuracy) for classifiers in f–i. **significantly 
greater than clinical features alone (P < 0.001) and connectivity features alone (P = 0.003) by permutation testing; *P = 0.04 (significantly greater 
than clinical features alone by permutation testing). Cross-hatched bars depict classifier accuracy with more stringent data quality controls (Online 
Methods) and excluding equivocal classification outcomes (the 10% of subjects with the lowest absolute SVM classification scores). Error bars depict 
s.e.m. in a and 95% confidence intervals in j. All abbreviations as in Figures 1 and 2. See Supplementary Table 7 for MNI coordinates for ROIs in d.
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diagnostic labels to patients who exhibit the same connectivity bio-
type? Motivated by studies identifying common neuroanatomical and 
functional changes that are shared across mood and anxiety disor-
ders50–53, we first asked whether patients diagnosed with generalized 
anxiety disorder (GAD; n = 39) shared similar patterns of abnormal 
connectivity with one or more of the depression biotypes identified 
above. GAD was associated with widespread connectivity differences 
in resting-state networks (Fig. 5a–c) that overlapped significantly 
with those in depression (χ2 = 5,457; P < 0.0001; Fig. 5a–c). Next, to  
test whether subsets of patients with GAD resemble one or more 

depression biotypes, we applied the optimized classifiers developed 
above to the GAD cohort (Online Methods). Although none of the 
patients with GAD in this analysis met clinical criteria for a diagnosis 
of depression, 69.2% of them were nevertheless classified as belonging 
to one of the depression biotypes, and a majority of these (59.3%) were 
assigned to the anxiety-associated biotype 4 (Fig. 5d).

Although anxiety symptom severity did not vary significantly by bio-
type classification (Fig. 5e), depressive symptom severity (Fig. 5f) and 
anhedonia (Fig. 5g) were significantly increased in patients with GAD 
who tested positive for one of the depression biotypes, as compared  
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to patients with GAD who did not test positive. Furthermore, just 
as anhedonia was increased in patients with depression in bio-
types 3 and 4, patients with GAD showed a similar trend (Fig. 5g;  
P < 0.05). Finally, to understand whether these classifiers were detect-
ing pathological connectivity related specifically to mood and anxi-
ety as opposed to nonspecific differences associated with psychiatric 
illness in general, we tested them on patients with schizophrenia  
(n = 41), a disorder that is not thought to be closely related to unipolar 
depression. Just 9.8% of patients with schizophrenia tested positive 
for a depression biotype (Fig. 5h).

DISCUSSION
Increasingly, diagnostic heterogeneity has emerged as a major obstacle 
to understanding the pathophysiology of mental illnesses and, in partic-
ular, depression. Although major depressive disorder—especially highly 

recurrent depression—is up to 45% heritable54, identifying genetic risk 
factors has proven challenging, even in extremely large genome-wide 
association studies55. Likewise, efforts to develop new treatments have 
slowed, owing in part to a lack of physiological targets for the assess-
ment of treatment efficacy and the selection of individuals who are most 
likely to benefit56. All of these challenges have been attributed in part to 
the fact that our diagnostic system assigns a single label to a syndrome 
that is not unitary and that might be caused by distinct pathological 
processes, which would thus require different treatments. Here we have 
defined four subtypes of depression associated with differing patterns 
of abnormal functional connectivity and distinct clinical-symptom pro-
files that transcend conventional diagnostic boundaries, and we have 
shown how neuroimaging biomarkers can be used to diagnose them. 
Our sample size, cross-validation in strictly independent samples and 
replication in independent data sets support these results.
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Figure 5  Connectivity biomarkers of depression biotypes transcend diagnostic boundaries. (a) Abnormal connectivity features in patients with generalized 
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However, this is to our knowledge the first effort to apply this 
type of statistical clustering for the purpose of defining depression 
subtypes and diagnosing them in individual patients, so caution is 
warranted. Replication of our findings in additional, independent, 
prospectively acquired data sets will be crucial for addressing some 
of the limitations inherent in our retrospective, multisite sample. We 
designed a preprocessing scheme specifically to control for site- and 
scanner-related artifacts, and we performed our clustering analysis on 
data from just two sites with nearly identical acquisition protocols and 
recruitment criteria. Still, it will be essential to replicate these findings 
in an equally large sample acquired from a single site. Furthermore, 
more extensive and uniform clinical phenotyping—especially within 
the relatively broad domains of anhedonia and anxiety—will be  
crucial for further understanding how connectivity-based biotypes 
relate to distinct symptoms and behaviors.

Importantly, we regard the four biotypes identified here as just one, 
initial solution to the problem of diagnostic heterogeneity in a system  
that relies primarily on the reporting of clinical symptoms. This  
solution is capable of predicting treatment response in a controlled, 
laboratory setting and advances our understanding of how heteroge-
neous symptom profiles in depression might be related to clustered 
patterns of dysfunctional connectivity. But alternative solutions to the 
problem of depression subtyping also exist, even in our 220-subject 
hierarchical clustering analysis, which was suggestive of additional 
subtypes nested within these four clusters. It is likely that relatively 
restrictive patient-recruitment criteria, the size of our cluster-discovery  
data set, and the ordinal nature of our clinical-symptom assessments 
were also limiting factors. For these reasons, clinical and neuroim-
aging data acquired from much larger populations will be useful 
for characterizing more complex associations between connectivity 
features and symptoms; for defining robust low-dimensional repre-
sentations of this connectivity feature space; and for optimizing the 
mapping between diagnostic subtypes and their underlying neuro-
biology. It will also be crucial to evaluate how these biomarkers per-
form in real-world, clinical settings, in which clinical assessments and 
treatments might be administered with varying fidelity, which could 
potentially diminish diagnostic and prognostic performance.

These caveats notwithstanding, our results have several potential 
applications. They may inform recent initiatives to rethink our system 
for diagnosing psychiatric disorders and investigating their neuro-
physiological and genetic basis, by stratifying subjects into subgroups 
defined by shared neurobiological substrates1. They might also guide 
optogenetic and other circuit neuroscience approaches to investigat-
ing how dysfunction in specific circuits contributes to depression- 
and anxiety-related behaviors in experimentally tractable animal 
models57–59. Finally, these biomarkers also have prognostic poten-
tial. Patients in biotype 1 were approximately three times more likely  
to benefit from TMS of the dorsomedial prefrontal cortex than those 
in biotypes 2 or 4, and together, biotype diagnosis and functional 
connectivity features could be leveraged to accurately differentiate 
treatment responders from nonresponders on an individual basis. 
Validating and adapting them for use in naturalistic clinical settings 
will be a key challenge, but our data are also consistent with other 
recent reports that highlight the potential of neuroimaging tools 
to predict treatment response9–14, a major priority for a condition 
in which most treatments are effective only after several months. 
Biomarkers have already transformed the diagnosis and manage-
ment of cancer, diabetes, heart disease and even pain syndromes8, 
but they have proven more elusive for psychiatry. Our results define 
one approach for using neuroimaging biomarkers to delineate  

and diagnose novel subtypes of mental illness characterized by  
uniform neurobiological substrates.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Subjects. All analyses were conducted in one of two data sets, unless otherwise 
noted (see also ‘Statistical analysis’ section below for subject details for each 
analysis, organized by figure panel). Data set 1 (n = 711 subjects, 333 patients and 
378 controls) was used for all analyses, except those depicted in Figures 3i, 4i  
and 5. That is, data set 1 was used to identify clusters (biotypes) of patients 
with distinct patterns of dysfunctional connectivity in resting-state networks, 
testing for neurobiological and clinical correlates of these biotypes, and for 
training and testing classifiers to diagnose them. To ensure that cluster dis-
covery was not confounded by site-related differences in subject recruitment 
criteria or other unidentified variables, the cluster-discovery analysis (Fig. 1) 
was restricted to a subset of patients in data set 1, the ‘cluster-discovery set’ 
(n = 220 of the 333 patients), who were recruited and scanned from just two 
sites with identical inclusion and exclusion criteria. Subjects in the cluster- 
discovery set were adult patients meeting Diagnostic and Statistical Manual of 
Mental Disorders (DSM-IV) criteria for (unipolar) major depressive disorder 
and seeking treatment for a currently active, nonpsychotic major depressive 
episode. They had a history of failure to respond to at least two antidepressant 
medication trials at adequate doses, including at least one during the current 
episode. Patients in the cluster-discovery set were excluded from enrollment 
if they had a currently active substance-use disorder, a psychotic disorder, 
bipolar depression, a history of seizures, unstable medical conditions, current 
pregnancy or other contraindications to MRI (for example, implanted devices, 
claustrophobia or head injury with loss of consciousness). As described in 
Supplementary Table 1, subjects from the two sites included in the cluster-
discovery set were matched for age, sex and depression severity (HAMD-17 
total score). Supplementary Table 1 also describes medication status, co-
morbid diagnoses and additional details about the scanning protocols for data 
acquired at these two sites.

Classifier training, cross-validation and optimization was performed in the 
full data set 1, i.e., the ‘training data set,’ which included patients diagnosed 
with unipolar major depressive disorder and a currently active major depressive  
episode (n = 333, 59.2% female, mean age = 40.6 years) and healthy control  
subjects without any history of a psychiatric condition (n = 378, 57.7% female, 
mean age = 38.0 years). The patient and control groups did not differ signifi-
cantly in age (P = 0.189, Mann–Whitney) or sex (χ2 = 0.61, P = 0.688). The 
patient scans were acquired at separate sites by five principal investigators (the 
two sites from the cluster-discovery set plus three additional sites). The control 
scans were acquired at these same five sites, as well as from seven additional 
sites that have provided unrestricted public access to their data through the 1000 
Functional Connectomes Project (http://fcon_1000.projects.nitrc.org). Inclusion 
and exclusion criteria were generally similar to those described above for the 
two sites in the cluster-discovery set, except that a history of treatment resistance 
was not a requirement. Exclusion criteria common to all sites were contraindi-
cations for MRI and a recent history of substance abuse or dependence. Other 
inclusion and exclusion criteria—and consequently, the presence of psychiat-
ric co-morbidities and use of psychiatric medications—varied by site and are 
detailed in Supplementary Table 2. Clustering into connectivity biotypes was 
not related to medication history, age or head motion (Supplementary Fig. 7). 
Additional demographic information for all sites in data set 1 is reported in 
Supplementary Table 3.

Data set 2 (n = 477)—the ‘replication data set’—was used to test the most 
successful classifier of each depression biotype in patients with active depression 
(n = 125 from seven sites) and healthy controls (n = 352 from 13 sites). Scans in 
data set 2 were acquired in separate studies, at a later date or were not initially 
available to us, and they were not used in any step of the cluster identification or 
classifier training procedure. Furthermore, five sites were unique to data set 2.  
Patients with depression at all sites in both data sets met DSM-IV criteria for 
a current major depressive episode (n = 109 unipolar; n = 16 bipolar 2), and 
healthy controls were subjects without any current or past history of a psychiatric 
or neurological condition.

To test whether patterns of abnormal connectivity that were evident in clusters 
of patients with depression were also present in subsets of patients with other 
psychiatric disorders (Fig. 5), we tested the same classifiers on patients meeting 
DSM-IV criteria for a diagnosis of generalized anxiety disorder (GAD, n = 39, 
69.2% female, mean age = 32.4 years) or schizophrenia (n = 41, 78.0% male, mean 

age = 38.2 years; no co-morbid mood disorders and no schizoaffective disorder). 
Data for the GAD subjects were acquired by one of the co-authors of this report 
(A.E.), and inclusion and exclusion criteria are described in Supplementary 
Table 2 (site: Stanford 1; PI: A. Etkin). Data for the schizophrenia subjects were 
obtained through the 1000 Functional Connectomes Project (http://fcon_1000.
projects.nitrc.org), made publicly available by the Center of Biomedical Research 
Excellence in Brain Function and Mental Illness (PIs: J. Sui, J. Liu, C. Harenski, 
R. Thoma and C. Abbott). Inclusion criteria were a diagnosis of schizophre-
nia (but not schizoaffective disorder), as confirmed by the Structured Clinical 
Interview for DSM Disorders (SCID), and exclusion criteria were a history of 
neurological disorder, mental retardation, head trauma with loss of conscious-
ness or substance abuse or dependence within the past 12 months. All subjects 
in all data sets provided informed consent, and all recruitment procedures and 
experimental protocols were approved by the Institutional Review Boards of the 
principal investigators’ respective institutions (Weill Cornell Medical College, 
Stanford University, Toronto Western Hospital, Emory University and Harvard 
Medical School).

Clinical measures. At all sites, initial screening interviews were conducted to 
determine eligibility to participate, and a trained clinician conducted a structured 
clinical interview (MINI or SCID) to confirm all psychiatric diagnoses and rule 
out exclusionary co-morbid conditions as defined in Supplementary Table 2.  
In addition, specific clinical symptoms were evaluated using the Hamilton 
Rating Scale for Depression (HAMD; n = 312 patients; n = 65 healthy controls), 
the Beck depression inventory (BDI, n = 39 patients with GAD) and the Beck 
anxiety inventory (BAI; n = 39 patients with GAD). These assessments were 
used to test the depression biotypes that were associated with specific clinical 
symptom profiles. For details, see ‘Clinical data analysis’ section below.

Magnetic resonance imaging (MRI) data acquisition. A resting-state func-
tional MRI scan was obtained by using a T2*-weighted gradient echo spiral 
in–out sequence or a Z-SAGA sequence, yielding whole-brain coverage in 
all subjects. A high-resolution T1-weighted anatomical scan (MP–RAGE or 
SPGR) was obtained for brain parcellation and co-registration purposes. 
Specific scanning parameters varied by site. Most used a TR of ~2 s, in-plane 
resolution of ~3.5 mm, and obtained 150–180 volumes in ~5–6 min. Detailed 
scanning parameters for each site are reported in Supplementary Table 1 and 
Supplementary Table 3.

fMRI data analysis: preprocessing. All data sets were preprocessed using the 
Analysis of Functional Neuroimages (AFNI) software package. Prior to other pre-
processing steps, framewise motion parameters were calculated by using AFNI’s 
3dvolreg function, owing to concerns that slice-time correction might lead to 
systematic underestimates of motion when this step is performed first. After 
estimating framewise motion parameters, preprocessing included standard pro-
cedures for slice-timing correction, spatial smoothing (with a 4-mm-full-width,  
half-maximum Gaussian kernel), temporal bandpass filtering (0.01–0.1 Hz), 
linear and quadratic detrending and removal of nuisance signals related to 
head motion, physiological variables and local and global hardware artifacts. 
Functional data sets were co-registered to the corresponding high-resolution 
T1 anatomical images, and T1 anatomicals were transformed into the Montreal 
Neurological Institute (MNI) common space by using AFNI’s 3dQwarp function 
to calculate and optimize a nonlinear transformation. To reduce the number of 
interpolations performed on resting-state data, we combined motion-correcting,  
anatomical-to-structural and structural-to-MNI template alignments and 
applied them to functional scans in a single step.

Motion correction was achieved using AFNI’s 3dvolreg function. Motion 
artifact is increasingly recognized as an important potential confound in resting- 
state fMRI studies, especially those involving clinical populations, and  
can introduce systematic shifts in signal correlations that vary as a function  
of the distance separating two brain regions25–27. To balance the demands of 
noise reduction and data preservation, we censored volumes preceding or  
following any movement (framewise displacement (FD)) greater than 0.3 mm.  
These volumes were excluded from all further analysis steps, including  
nuisance regression. A small number of subjects (8.9%) were excluded from fur-
ther analysis if the number of remaining volumes was insufficient for performing 

©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

http://fcon_1000.projects.nitrc.org
http://fcon_1000.projects.nitrc.org
http://fcon_1000.projects.nitrc.org


nature medicine doi:10.1038/nm.4246

simultaneous nuisance signal regression and band-pass filtering as described 
below. (Note that descriptions of the number of subjects comprising each data 
set in the ‘Subjects’ section above and in the main text refer to subjects that 
were actually used in each analysis, after excluding scans because of motion 
contamination or poor signal quality, as defined below.)

Next, nuisance signal regression and band-pass filtering were performed 
simultaneously, only on volumes that survived motion censoring, and exclud-
ing high-motion volumes. This is because noise from high-motion volumes has  
been shown to contaminate other volumes, even if they are eventually omitted 
from final analyses60,61. Accordingly, the regression step included 12 motion 
parameters (roll, pitch, yaw, translation in three dimensions and their first 
derivatives); non-neuronal signals from eroded white matter and CSF masks; 
and regressors for temporal filtering. Finally, we used AFNI’s ANATICOR func-
tion to eliminate local and global hardware artifacts62–63. After preprocessing, 
the residual time series files, co-registered to MNI space, were used for all  
subsequent analyses.

A note on motion artifact. We selected a censoring threshold (FD > 0.3 mm) 
empirically based on analyses showing that it was sufficient to exclude the 
majority of excursions from so-called floor values in single-subject FD traces 
(Supplementary Fig. 1), which have been associated with significant motion 
artifact, while preserving enough data to allow for stable estimates of signal cor-
relations25–27. It is also worth noting that this threshold resembles commonly 
used thresholds (0.2–0.5 mm) in recently published reports (reviewed in ref. 64).  
However, we found that a small number of RSFC features (just 0.7% of the con-
nectivity features that differentiated patients and controls, at a liberal threshold 
of P < 0.005, uncorrected) were significantly different in low- versus high-motion 
subjects after ANATICOR regression and censoring at 0.3 mm (Supplementary 
Fig. 1d). To further evaluate whether motion artifact affected cluster discovery 
and biotype diagnoses, we repeated the hierarchical clustering analysis depicted 
in Figure 1 after excluding the 0.7% of RSFC features that varied with motion 
at this liberal threshold (P < 0.005). 99.1% of all subjects were assigned to the 
same cluster (Supplementary Fig. 1h). To rule out the possibility that multivari-
ate classifiers may been influenced by the aggregation of subtle between-group 
differences in motion artifact that were undetectable by the mass univariate 
approach implemented in ref. 64, we conducted additional analyses reported  
in Supplementary Figure 1i,j. The results indicate that our clustering and  
classification results were not biased substantially by motion.

fMRI data analysis: parcellation and whole-brain connectivity estimation. 
The objective of this analysis was to extend conventional seed-based approaches 
to generate a whole-brain correlation matrix for each subject, quantifying func-
tional connectivity in regions of interest spanning the entire brain in terms of 
correlated, spontaneous fluctuations in the resting-state BOLD signal. Most data 
sets were acquired in a native grid space of ~3.5 × 3.5 × 5 mm, yielding ~30,000 
brain voxels and up to ~4.5 × 108 unique, potential pairwise correlations. To 
increase computational tractability and biological interpretability, all analyses 
reported in the main text used an established and extensively validated functional 
parcellation system28 to delineate functional network nodes (10-mm diameter 
spheres) spanning most cortical, subcortical and cerebellar areas. The originally 
published parcellation identified 264 nodes (ROIs). Here 13 ROIs that have 
hypothesized roles in depression-related pathology, but that are not represented 
in this 264-node parcellation, were added, including the left and right nucleus 
accumbens, subgenual anterior cingulate, head of the caudate nucleus, amygdala, 
ventral hippocampus, locus coeruleus, ventral tegmental area and raphe nucleus, 
for a total of 264 + 13 = 277 nodes. However, 19 of the 277 nodes—mostly 
cerebellar and inferior temporal areas—were excluded from further analyses 
owing to incomplete MRI volume coverage or because of inadequate signal 
(SNR < 100), as discussed in more detail below. Thus, the primary parcellation 
used in all analyses included 264 +13 – 19 = 258 functional nodes. In addition, 
when optimizing the biomarkers developed in Figure 3, we tested four strate-
gies for parcellation: (i) The primary functional parcellation of Power and col-
leagues that is described above and is the focus of the analyses in the main text28;  
(ii) a ‘coarse voxelwise’ parcellation strategy, a standard anatomical template 
brain (1 × 1 × 1–mm resolution in MNI space) was resampled to a 10 × 10 × 
15–mm grid space. After excluding voxels (or portions of voxels) corresponding 
to white matter or CSF using masks derived from a segmentation of the original 

template brain into tissue classes (via AFNI’s 3dSeg function), we were left with 
945 ROIs spanning all cortical, subcortical and cerebellar gray matter; (iii) an 
anatomical parcellation used the Freesurfer atlas developed by Desikan, Killiany 
and colleagues that segments the brain into 68 gyral-based cortical ROIs and an 
additional 22 subcortical and cerebellar areas for a total of 90 anatomical regions 
of interest65; (iv) finally, a second functional parcellation (in addition to the used 
90 cortical and subcortical ROIs defined by Shirer, Greicius and colleagues using 
independent-components analysis to identify brain voxels that exhibit correlated 
activity in association with one or more cognitive states (rest, episodic-memory 
retrieval, serial calculations or singing lyrics; see ref. 66 for details). The best 
results were obtained from the primary functional parcellation devised by Power 
and colleagues28, which was the focus of all other analyses.

After preprocessing the resting-state fMRI data and parcellating the brain 
as described above, BOLD signal time series were extracted from each ROI by 
averaging across all voxels in that ROI, and a correlation matrix was calculated 
for each subject by using AFNI’s 3dNetCorr function. However, before doing 
so, we took additional steps to control for scanner- and site-related differences 
that could potentially confound analyses of data pooled across multiple sites. 
First, we controlled for site-related differences in signal quality or scan coverage 
by excluding ROIs if the signal-to-noise ratio (SNR, the voxelwise mean of the 
magnetic resonance signal over time divided by the s.d. of the time series) was 
less than 100 in >5% of subjects. On this basis, we excluded 13 of the 277 ROIs 
in the primary functional parcellation, leaving 264 ROIs for further analysis. 
Most excluded ROIs were located in the inferior cerebellum, which did not 
have consistent coverage across all sites, or on the ventral surface of the tem-
poral lobe or the orbital surface of the frontal lobe, which tended to have lower 
SNR in some scans, likely owing to artifact at the interface with air sinuses. 
Second, for each subject, only voxels with SNR > 100 were used to calculate the 
mean BOLD signal time series for each ROI, to further control for local dif-
ferences in signal quality on a per subject basis. And third, a small number of 
subjects (2.9%) was excluded from further analysis if the signal quality was low  
(SNR < 100) in any of the remaining 258 ROIs.

Thus, after excluding 13 ROIs with low-quality signal and a small number 
of subjects with excessive head motion (8.9%) or poor signal quality (2.9%), 
we calculated 258 × 258–element correlation matrices for each of the remain-
ing subjects (n = 711 for data set 1; n = 477 for data set 2; see ‘Subjects’ above).  
To enable us to test hypotheses about functional connectivity differences in the 
depressed and control populations, we applied the Fisher z-transformation to 
each correlation coefficient. Next, we used multiple linear regression to further 
control for site- and age-related effects on functional connectivity by regress-
ing the Fisher z-transformed correlation coefficients for each matrix element  
on subjects’ ages and dummy variables for each site. The resulting residuals—
comprising a 258 × 258–element matrix for each subject—were an estimate of 
the functional connectivity between each ROI and every other ROI, controlling 
for age effects and relative to other subjects whose data were acquired on the 
same scanner. Henceforth, we refer to these matrices of residuals as functional 
connectivity matrices.

fMRI data analysis: canonical correlation analysis and clustering. To ensure 
that cluster discovery was not confounded by site-related differences in subject 
recruitment criteria or other unidentified variables, the cluster-discovery analy-
sis was restricted to a subset of patients (the ‘cluster-discovery set,’ n = 220 of the 
333 patients) from two sites with identical inclusion and exclusion criteria (see 
Supplementary Tables 1–3 for details). Each subject’s 258 × 258–element cor-
relation matrix contained 33,154 unique functional connectivity features, neces-
sitating a protocol for selecting a subset of relevant, nonredundant connectivity 
features for use in clustering. We reasoned that biologically meaningful depres-
sion subtypes would be best characterized by a low-dimensional representation 
of a subset of those 33,154 connectivity features that were significantly correlated 
with depressive symptoms. Therefore, to select a set of connectivity features for 
use in clustering, we (i) used Spearman’s rank correlation coefficients to identify 
connectivity features that were significantly correlated (P < 0.005) with sever-
ity scores for one or more of the 17 depressive symptoms, as indexed by indi-
vidual item responses on the Hamilton Depression Rating Scale (HAMD-17),  
and then (ii) used canonical correlation analysis to define a low-dimensional 
representation of those connectivity features, in terms of linear combinations of 
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connectivity features that were correlated with linear combinations of clinical 
symptoms. This empirical, data-driven approach to feature selection and dimen-
sionality reduction identified two linear combinations of functional connectivity 
features (canonical variates) that were correlated with distinct clinical-symptom 
combinations, which we term “anhedonia-related connectivity features” and 
“anxiety-related connectivity features.” The results are depicted in Figure 1, with 
additional details in Supplementary Figure 2.

Next, to assess whether these abnormalities were evenly distributed across 
patients or tended to cluster in subgroups, we used hierarchical clustering to 
assign subjects to nested subgroups with similar patterns of abnormal connectiv-
ity along these two dimensions. We calculated a dissimilarity matrix describing 
the Euclidean distance between every pair of subjects in this two-dimensional 
feature space, and then used Ward’s minimum variance method to iteratively link 
pairs of subjects in closest proximity, forming progressively larger clusters in a 
hierarchical tree. These methods were implemented by using MATLAB’s pdist, 
linkage, cluster and clusterdata functions. The height of each link in the resulting 
dendrogram (Fig. 1d) represents the distance between the clusters being linked. 
On this basis, we conservatively identified at least four clusters for which the dis-
tance between cluster centroids was at least 20 times the mean distance between 
pairs of subjects within a cluster. Additional potential clustering solutions were 
also evident, nested within these subgroups. However, this four-cluster solution 
was optimal for defining relatively homogeneous subgroups that were maximally 
dissimilar from each other (maximizing the ratio of between-cluster to within-
cluster variance), while ensuring individual cluster sample sizes that provided 
sufficient statistical power to detect biologically meaningful differences between 
biotypes (Supplementary Fig. 3). To construct the heat maps depicted in Figure 2,  
we used Wilcoxon rank–sum tests to identify connectivity features that were 
significantly different in patients with depression from each cluster, as compared 
to all controls, and Kruskal–Wallis ANOVA to identify connectivity features that 
differed most between clusters.

As described in the following section, we also investigated whether abnormal  
resting-state connectivity features could be used to diagnose these putative 
depression subtypes in individual subjects by training classifiers to detect them 
(Fig. 3). In our efforts to optimize classifier performance, we compared the 
hierarchical clustering method described above with k-means clustering, as 
implemented by MATLAB’s kmeans function, which assigns each subject to 
exactly one of k clusters on the basis of their squared Euclidean distance from 
the centroid of each cluster, iteratively assigning and reassigning subjects to 
a cluster to minimize the sum of the within-cluster sum-of-squares subject- 
to-centroid distances.

Classification: training and cross-validation of diagnostic classifiers for 
depression biotypes. In analyses depicted in Figure 3, we developed classi-
fiers for diagnosing depression in subgroups of patients with similar patterns 
of abnormal functional connectivity in resting-state networks, testing and opti-
mizing methods for brain parcellation and feature extraction, subject clustering, 
feature selection and classification to identify empirically the most successful 
approach. This optimization process was conducted exclusively in subjects 
from data set 1 (n = 711). As depicted in Figure 3a and in greater detail in 
Supplementary Figure 6, each optimization trial tested a combination of one of 
four methods for parcellation and feature extraction (coarse voxelwise parcella-
tion, anatomical parcellation and two functional parcellations; see ‘Parcellation’ 
above); one of three methods for clustering (no clustering, k-means clustering 
or hierarchical clustering; see ‘Clustering’ above); and one of three methods for 
classification: logistic regression, support vector (SVM) classification or linear 
discriminant analysis (LDA).

On each optimization trial, a given combination of methods was evaluated 
by iteratively training classifiers on a subset (the ‘training subset’) of the sub-
jects in data set 1 and then testing them on the remaining subjects (the ‘test 
subset’) through leave-one-out cross validation (LOOCV). As above, only the 
220 patients in the two-site cluster-discovery set were used in the clustering 
analysis, whereas all 333 patients and 378 controls in data set 1 were eligible to 
be used in classification.

Assigning left-out subjects to clusters. The 133 patients (n = 333 – 220 = 133)  
left out of the cluster-discovery set were assigned to one of the four clus-
ters in a two-step process. First, the canonical coefficients estimated in the  

cluster-discovery set were used to calculate canonical variate (component) scores 
for the left-out subjects. Second, LDA classifiers trained on the cluster-discovery 
sample were used to assign left-out subjects to one of the four clusters. The same 
two-step process was used to assign test subjects to the best-fitting cluster for 
the leave-one-out cross-validation analyses described below.

Classifier training. Classifier training was performed using the libsvm clas-
sification package67, the SPSS Statistics package (IBM: http://www.ibm.com/ 
software/analytics/spss/products/statistics), or MATLAB classification functions 
(see schematic in Supplementary Fig. 6). Classifiers were trained to discriminate 
between patients with depression and healthy controls on the basis of a set of the 
most abnormal connectivity features, which were selected from the full set of 
all possible connectivity features (33,154 for the primary functional parcellation 
used in all other figures; 337,431 for the voxelwise parcellation; ~4,000 for the 
anatomical and second functional parcellations). In preliminary analyses (data not 
shown), we found that the optimal number of features depended on the parcel-
lation strategy and classifier method. Simple logistic-regression classifiers could 
be trained only on a small set of features constrained by the number of subjects in 
each group; optimal performance was obtained in most cases with the top 20 fea-
tures. SVM and LDA classifiers performed best when trained on the top ~5–10% 
of the most abnormal features for the primary functional and voxelwise parcel-
lations (~1.5–3,000 and 10,000–25,000 features, respectively) and the top 25% 
for the coarser anatomical and functional parcellations (1,000 features). Thus, in 
Figure 3b, simple logistic-regression classifiers were trained on the top 20 features, 
whereas LDA and SVM classifiers were trained on the top ~2,000 features for the 
primary functional parcellation, ~1,000 features for the anatomical and secondary 
functional parcellations or ~10,000 features for voxelwise parcellation.

After being trained on subjects in the training subset, the resulting classifiers 
were tested on subjects in the test subset. Importantly, subjects in the test subset 
were left out of all aspects of the optimization procedure, including dimension 
reduction by canonical correlation analysis, clustering, feature selection and clas-
sifier training. This is crucial, because including members of the test subset in the 
clustering or feature-selection procedures will yield biased, inflated estimates of 
classifier accuracy. Trials that did not use clustering yielded one classifier on each 
iteration, which was then applied to subjects in the test subset, and the accuracy 
rates in Figure 3b represent the percentage of patients and healthy controls 
correctly classified as patients and healthy controls, respectively, averaged over 
all iterations. Trials that used clustering yielded three, four or five classifiers 
as indicated in Figure 3b. Testing each of them on every subject would tend 
to overestimate accuracy for patients and underestimate accuracy for healthy 
controls. Therefore, we tested only one of the biotype classifiers on each subject, 
on the basis of proximity to the cluster centroid or (in the case of the best per-
forming classifiers depicted in Fig. 3g), by using the LDA classifiers for cluster 
assignment described above. For the purposes of defining a cluster’s centroid in 
order to make new cluster assignments, we excluded a small number of subjects 
(n = 15, or 6.8% of all subjects in the cluster-discovery set) with ambiguous 
cluster identities. These ‘edge cases’ were defined as cases with cluster silhouette 
values <0, indicating a case that was poorly matched to its own cluster and pos-
sibly better matched to a neighboring cluster. (We found that for small clusters, 
these edge cases could distort the calculation of the cluster’s centroid location, 
resulting in unstable cluster assignments across iterations.) In Figure 3c–f, the 
neuroanatomical locations of the most discriminating nodes were plotted by 
selecting connectivity features that were significantly different from controls (by 
Wilcoxon rank–sum tests) across each round of training and cross-validation. 
The nodes were colored and scaled by summing across all connectivity features 
associated with that node, as described in ref. 68.

Permutation testing. By systematically testing various combinations of 
methods for parcellation, clustering, and classification, we found that the most 
successful classifier used our primary functional parcellation28, hierarchical 
clustering and SVM classification with linear kernel functions, and correctly 
identified healthy controls and patients with sensitivities of 84.1–90.9% and 
specificities of 84.1–92.5% (Fig. 3g). The statistical significance of these results 
was estimated by permutation testing, randomly permuting the diagnostic 
labels for each subject and applying the exact same procedure for clustering, 
feature selection and classifier training and repeating this procedure 200 times. 
Permutation testing was used to assess the statistical significance of the most  
successful classifier derived from each of the three classification methods  
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(logistic regression, SVM and LDA). For all three methods, the reported accu-
racy rates exceeded those obtained on all 200 permutation tests, indicating a 
statistical significance of P < 0.005.

Classification: testing classifiers in an independent replication data set.  
It is well established in the machine-learning literature that iterative training 
and cross-validation on the same data overestimate classifier performance, and 
other studies have raised questions about the capacity for classifiers trained on 
one data set at a single site to generalize to data collected at multiple sites44,46.  
To address these issues, we tested the most successful classifier for each depres-
sion biotype (primary functional parcellation, hierarchical clustering and SVM 
classification) in an independent replication data set (data set 2; n = 477 sub-
jects), comprising 125 patients and 352 healthy controls acquired from 13 sites, 
including five sites that were not included in the original training data set. This 
analysis was essentially identical to the analysis of test subjects in cross-validation 
described above. After preprocessing, parcellation and BOLD signal time-series 
extraction, we calculated correlation matrices, and the Fisher z-transformed 
correlation coefficients were corrected for age and site effects. For subjects in 
data set 2 who were scanned at a site that was included in data set 1, we corrected 
for age and site effects using the beta weights calculated for subjects in data set 
1 to calculate residuals as described above. For subjects in data set 2 who were 
scanned at new sites that were not included in data set 1 (all healthy controls), we 
used multiple linear regression to estimate beta weights for these new sites. Next, 
the classifier for one depression biotype was tested on each subject by using the 
two-step procedure for cluster/biotype assignment described above (‘Assigning 
left-out subjects to clusters’). The overall accuracy rates and accuracies by cluster 
are reported in Figure 3i. To better understand the potential for further improve-
ments in classifier performance in future, prospective data sets, we also calcu-
lated accuracy rates separately after implementing stricter data quality controls 
and by treating subjects with ambiguous classification outcomes as equivocal test 
results, as is common practice for biomarkers in other areas of medicine. These 
calculations excluded subjects with <300 s of data after censoring, motivated by 
reports that the stability of low-frequency BOLD signal-correlation estimates is 
higher for longer-duration scans;69 subjects with FD motion estimates exceeding 
0.18 mm, i.e., the 95th percentile in our training set, motivated by our finding in 
Supplementary Figure 1 that classification rates in cross-validation (i.e., in data 
set 1) were slightly lower in the 5% of subjects with the highest levels of motion 
(χ2 = 5.096, P = 0.024); and the 10% of subjects with the lowest absolute SVM 
classification scores, i.e., equivocal classification outcomes. The results of these 
analyses are depicted in the cross-hatched bars in Figures 3i and 4j.

We also tested whether cluster assignments were stable over time, reason-
ing that if these clusters represent biologically meaningful depression subtypes, 
then a patient diagnosed with one of these subtypes should be diagnosed with 
the same subtype when re-tested at a later date. To assess this, we tested for 
reproducibility in a subset of subjects (n = 48) who were re-scanned 4–6 weeks 
after the initial scan and remained actively depressed (meeting DSM-IV criteria  
for a major depressive episode). As above, each subject was assigned to a 
cluster using the two-step procedure for biotype assignment described above  
(‘Assigning left-out subjects to clusters’), and we assessed the stability of cluster 
assignments across scans (Fig. 3h). A chi-squared test was used to assess the 
statistical significance of the longitudinal-stability results.

Clinical-data analysis. To assess whether biotypes of depression defined by 
unique patterns of resting state functional connectivity were associated with 
specific clinical profiles (Fig. 2f), we used Kruskal–Wallis analysis of variance to 
test for biotype differences in the severity of depressive symptoms in the cluster-
discovery set (n = 220), as indexed by the HAMD. The six symptoms reported 
in Figure 2f showed the largest main effects of biotype (see Supplementary  
Fig. 4a for results for all 17 HAMD items). In Supplementary Figure 4c, we also 
tested for differences in these same six measures in clinical data acquired from 
subjects that were not included in the clustering analysis (n = 92).

In Figure 2c, we tested whether abnormal connectivity features that were 
shared across all four biotypes predicted the severity of ‘core’ symptoms that 
were present in almost all patients, regardless of biotype. We found that of  
the 17 symptoms quantified by the HAMD, three were present in almost all 
patients with depression (>90%); these included depressed mood (“feelings 

of sadness, hopelessness, helplessness”, 97.1%), anhedonia (96.7%) and aner-
gia or fatigue (93.9%). We used principal-components analysis to define a  
low-dimensional representation of these shared, abnormal connectivity features  
and correlated the first component with severity scores for these three  
symptoms. The results are depicted in quartile plots in Figure 2c.

Repetitive transcranial magnetic stimulation and related analyses. In Figure 4,  
we tested whether depression biotypes defined by unique patterns of abnormal 
functionally connectivity were differentially responsive to rTMS in a subset of sub-
jects (n = 154 in total) who received a course of excitatory repetitive TMS (10 Hz  
or intermittent theta burst stimulation) targeting the dorsomedial prefrontal 
cortex, beginning the week after their fMRI scan. The left dorsolateral prefron-
tal cortex is the most common target for stimulation in rTMS clinical trials48, 
but recent studies have demonstrated efficacy for the dorsomedial prefrontal 
cortical (DMPFC) target used here13,70. Of note, DMPFC was among the most 
important neuroanatomical areas differentiating the four biotypes in Figure 2d, 
which suggested to us that biotype differences in dysfunctional connectivity at 
the DMPFC target site may give rise to differing treatment outcomes.

The treatment parameters and scanning parameters for this sample have 
been previously described in detail elsewhere13,71. To summarize, all subjects 
received five sessions of TMS per week for 4–6 weeks (20–30 sessions total), 
delivered using a MagPro R30 rTMS device (MagVenture, Farum, Denmark) 
and a Cool-DB80 stimulation coil. For subjects who received 10-Hz stimulation 
(n = 86), each session included 3,000 pulses per hemisphere, delivered to the 
dorsomedial prefrontal cortex at 120% of resting motor threshold at a frequency 
of 10 Hz and with a duty cycle of 5 s on and 10 s off, for a total of 3,000 pulses 
in 60 trains per hemisphere per session (6,000 pulses total). For subjects who 
received intermittent theta burst stimulation (n = 68), each session included 
600 pulses per hemisphere, delivered to the dorsomedial prefrontal cortex, at 
120% of resting motor threshold, in 50 Hz triplet bursts, five bursts per second, 
with a duty cycle of 2 s on and 8 s off, for a total of 600 pulses in 20 trains per 
hemisphere per session (1,200 pulses total). To increase the tolerability of the 
DMPFC stimulation protocol, which has been associated with discomfort in 
some reports, all subjects also underwent a scalp-pain acclimatization protocol, 
as detailed in refs. 13,71. Depression severity was assessed using the 17-item 
HAMD before and after the course of treatment, and clinical improvements 
were measured in terms of changes in the total HAMD score.

To assess whether treatment response varied with depression biotype, sub-
jects were classified as “treatment responders” or “treatment nonresponders”. 
Treatment responders were subjects who showed either a partial or full response 
to treatment, conventionally defined as a 25–50% or >50% reduction in HAMD 
scores, and “treatment nonresponders” were subjects who showed a <25% reduc-
tion in HAMD scores. A chi-squared test was used to assess whether treatment 
response rates varied with depression biotype, and Kruskal–Wallis analysis of 
variance was used to test whether change in HAMD varied with depression 
biotype (Fig. 4a,b).

In addition, we tested whether functional connectivity features and biotype 
diagnosis were predictive of treatment response in a training and cross-validation  
sample (~80% or n = 124 of the 154 patients; Fig. 4c–g) and then tested the best-
performing classifier in an independent replication sample (~20%, n = 30 of the 
154 patients). Using a procedure identical to the one described above, we used 
the primary functional parcellation, feature selection and SVM classification 
methods to iteratively train classifiers to prospectively identify TMS responders 
and nonresponders on the basis of connectivity features assessed before treat-
ment, with leave-one-out cross validation (Fig. 4f). As above, the test subjects 
were left out of all aspects of feature selection and classifier training. We repeated 
this process using both connectivity features and biotype diagnosis, coded as 
four binary dummy variables (Fig. 4g). To understand whether clinical profiles 
were sufficient to predict treatment response without resting-state connectivity 
measures, we trained classifiers to differentiate responders and nonresponders 
solely on the basis of clinical data using an identical approach (Fig. 4h). Finally, 
we tested the best-performing classifier, which used both functional connectivity 
features and biotype diagnosis, in the independent replication sample (Fig. 4i).

Statistics. In Figure 1, canonical correlation analysis was used to define a  
low-dimensional representation of connectivity features (n = 220 patients  
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from the “Toronto” and “Cornell 1” sites, Supplementary Table 1) that were 
predictive of two specific combinations of clinical symptoms (see above), and 
hierarchical clustering analysis (Fig. 1e–f) was used to delineate clusters of sub-
jects in a two-dimensional space defined by these two canonical variates.

In Figure 2a–c, Wilcoxon rank–sum tests were used to test for differences in 
functional connectivity between all patients in the cluster-discovery set (n = 220) 
and all healthy controls (n = 378, Supplementary Table 3, training Data set),  
and Spearman rank correlations were used to test for associations with three  
clinical symptoms that were present in at least 90% of patients (n = 220). In 
Figure 2d,e, Kruskal–Wallis ANOVA (n = 220) was used to test for connectivity 
features that varied by biotype, and Wilcoxon rank–sum tests were used to assess 
whether these connectivity features were increased or decreased in depression 
(n = 220) as compared to controls (n = 378). In Figure 2f,g, Kruskal–Wallis 
ANOVA (n = 220) was used to test for differences in clinical-symptom severity 
by biotype.

In Figure 3b,g, classifier accuracy was assessed in leave-one-out cross  
validation in the full training data set (n = 333 patients, n = 378 healthy  
controls; Supplementary Table 3, training data set), with the test subject strictly 
excluded from all aspects of the clustering and classification optimization  
process, and statistical significance was assessed by establishing a null hypoth-
esis distribution by randomly permuting diagnostic labels 500 times (see 
‘Classification’ and ‘Permutation testing’ sections above). In Figure 3h, the lon-
gitudinal stability of biotype assignments was assessed in a subset of subjects 
from the cluster-discovery set (n = 50 patients with depression from “Cornell 1” 
site) who received a second fMRI scan obtained 4–5 weeks after the initial scan, 
and a chi-squared test (n = 50) was used to assess for a statistical dependence 
between biotype ID on scans 1 and 2. In Figure 3i, the most successful classi-
fier identified in Figure 3b was tested in an independent replication data set  
(n = 125 patients, n = 352 healthy controls; Supplementary Table 3, replication 
data set). In Figures 3h and 3i, the scans used for testing longitudinal stability 
and for replicating classifier performance were not used in any aspect of the 
cluster-discovery process or classifier optimization.

In Figure 4a,b, chi-squared tests (a) and Kruskal–Wallis ANOVA (b) were used 
to test for biotype differences in response rates and improvements in depression 
severity (change in total HAMD), respectively, in patients after treatment with 
TMS (n = 124 patients with depression from training data set, “Toronto” site). 
In Figure 4c–e, Wilcoxon rank–sum tests were used to test for functional con-
nectivity differences in TMS partial responders (n = 70) versus nonresponders  
(n = 54). In Figure 4f–i, classifier accuracy for differentiating responders (n = 70) 
and nonresponders (n = 54) was assessed by using leave-one-out cross validation 
and permutation testing, as in Figure 3, and the best-performing classifier was 
tested in an independent replication set (n = 30 patients with depression from 
replication data set, “Toronto” site) in Figure 4j.

In Figure 5a–c, Wilcoxon rank–sum tests were used to test for functional con-
nectivity differences in patients with generalized anxiety disorder (n = 39 patients 
with GAD from “Cornell 1” and “Stanford 1” sites) versus healthy controls  

(n = 378, training data set; Supplementary Table 3), and a chi-squared test was 
used to test for significant overlap in depression- and GAD-related connectivity  
features (Fig. 5b). In Figure 5d and h, we applied the biotype classifiers devel-
oped in Figure 3 to the patients with GAD (n = 39) and to a separate cohort  
of patients diagnosed with schizophrenia (n = 41 patients with rsfMRI scans 
shared through the 1000 Functional Connectomes Project and the Center of 
Biomedical Research Excellence in Brain Function and Mental Illness (COBRE)). 
In Figure 5e–g, Kruskal–Wallis ANOVA was used to test for biotype differ-
ences in clinical symptom severity in the same patients with GAD (n = 39). 
Throughout, all P values are two-tailed, and all error bars are either s.e.m. or 95% 
confidence intervals, as defined in the corresponding figure legends.

Data availability. Data from the following sites (Supplementary Tables 2 and 3) 
are publicly available for download through the 1000 Functional Connectomes 
Project International Data Sharing Initiative (http://fcon_1000.projects.nitrc.
org/index.html): NKI, Atlanta, Cambridge, Cleveland, ICBM, New York, 
COBRE, Beijing, Milwaukee and Leipzig. Data from the remaining sites are 
available at the discretion of the respective principal investigators, listed in 
Supplementary Table 2.
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