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The Clinical Applicability of Functional
Connectivity in Depression: Pathways
Toward More Targeted Intervention
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ABSTRACT
Resting-state functional magnetic resonance imaging provides a noninvasive method to rapidly map large-scale
brain networks affected in depression and other psychiatric disorders. Dysfunctional connectivity in large-scale brain
networks has been consistently implicated in major depressive disorder (MDD). Although advances have been made
in identifying neural circuitry implicated in MDD, this information has yet to be translated into improved diagnostic or
treatment interventions. In the first section of this review, we discuss dysfunctional connectivity in affective salience,
cognitive control, and default mode networks observed in MDD in association with characteristic symptoms of the
disorder. In the second section, we address neurostimulation focusing on transcranial magnetic stimulation and
evidence that this approach may directly modulate circuit abnormalities. Finally, we discuss possible avenues of
future research to develop more precise diagnoses and targeted interventions within the heterogeneous diagnostic
category of MDD as well as the methodological limitations to clinical implementation. We conclude by proposing,
with cautious optimism, the future incorporation of neuroimaging into clinical practice as a tool to aid in more
targeted diagnosis and treatment guided by circuit-level connectivity dysfunction in patients with depression.
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Depression affects up to 20% of people over the course of
their lives, making it the leading cause of disability worldwide
and the third leading cause of death in adolescents and young
adults (1). Despite significant advances in neuroscience over
the past several decades, the translational application of
research findings into the clinical practice of psychiatry
continues to lag behind the rest of medicine. Psychiatrists
rely on the classification of symptoms into clusters defined by
DSM and lack objective tools, such as neuroimaging scans or
serum assays, to assist in the diagnosis, treatment selection,
and measurement of treatment response in major depressive
disorder (MDD). Although available treatments for depression
can be effective, they are based on the ad hoc selection of
medication and psychotherapy, and often weeks to months
are required to determine efficacy. Just as obtaining a
magnetic resonance imaging scan or electroencephalography
study is the standard of care for diagnosing dementia or
epilepsy, respectively, resting-state functional magnetic reso-
nance imaging (fMRI) has the potential to aid in more precise
diagnosis in depression. Psychiatric disorders can be consid-
ered as the consequence of disruption or dysrhythmia within
interconnected brain circuits that underlie brain functions,
including attention, memory, and emotion. As such, a tool
optimally suited for understanding circuit dynamics has the
potential to bring important insights into understanding and
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diagnosing pathophysiology as well as guiding the develop-
ment of circuit-targeting treatments.

The prospect of applying resting-state fMRI to clinical
psychiatry has gained increasing attention in recent years.
Resting-state fMRI provides a rapid and noninvasive means of
investigating functional connectivity across multiple brain
regions (2–4). It detects direct anatomic pathways as well as
functional connectivity between regions linked by multisynap-
tic projections (5,6). This technique is also able to detect short-
term and long-term plasticity within networks (7–9) and avoids
task-related confounds, such as performance level, ceiling and
floor effects, effort, and selection of task strategy (3,10–12).
Despite notable strengths, functional neuroimaging is an
indirect measure of brain activity. Changes in voxel signal do
not solely reflect alterations in neuronal activity, but rather a
heterogeneous tissue sample consisting of neurons, glial cells,
capillaries, and extracellular matrix. Although sophisticated
tools have been developed to minimize spurious correlations
in resting-state networks, head movement and other artifacts
remain potential confounds when interpreting fMRI data (13).
Additional notes of caution addressed by Weinberger and
Radulescu (14) include potential alterations in magnetic reso-
nance imaging signal induced by blood perfusion (15), psychi-
atric medications (16), psychotropic drugs (17), exercise (18),
body mass index, and insulin sensitivity (19).
. All rights reserved.
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Figure 1. Large-scale neural networks implicated in the pathophysiology
of depression. The frontoparietal “task positive” cognitive control network
comprises the medial and superior frontal cortex, including the dorsolateral
prefrontal cortex, and other brain regions that are active during externally
focused attention and goal-oriented task performance. The default mode
network consists of brain regions preferentially active in the absence of
external stimuli (the so-called resting state). The affective salience network
is an interconnected network centered around the amygdala, ventral
striatum, insula, and dorsal anterior cingulate cortex that is centrally
involved in guiding behavior through processing motivationally salient
stimuli.
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Significant progress has been made with respect to detect-
ing functional connectivity abnormalities associated with char-
acteristic symptoms of depression, including anhedonia,
depressed mood (20), deficits in emotion processing (21),
cognitive impairment (7,22), negative self-rumination (i.e., feel-
ings of guilt and worthlessness) (23), and neurovegetative
symptoms (24). However, these findings have yet to translate
into robust diagnostic or treatment biomarkers. The diagnosis
of MDD remains a clinical one, based on clinical observation
and self-report of depressive symptoms in accordance
with DSM criteria. Transitioning resting-state fMRI from a
group-based analytic research tool to a clinical biomarker on
the single subject level has the potential to provide more
precise diagnosis and treatment approaches for patients with
depression. Through detecting deficits within neural circuitry
that map onto specific symptoms, resting-state fMRI may
assist in developing a more accurate subclassification system
under the umbrella of “depression”—one that better maps
onto the underlying circuit impairment—and thus more tar-
geted therapies. From a treatment perspective, specific
symptoms could be targeted by modulating their correspond-
ing connectivity abnormalities.

In the present review, we examine the existing literature on
abnormalities within brain networks implicated in the patho-
physiology of depression. We summarize their associations
with specific symptoms of depression as well as the effects of
selective serotonin reuptake inhibitors (SSRIs) and electro-
convulsive therapy (ECT) on altering resting-state functional
connectivity within these networks. We then discuss
circuit-based neuroimaging findings following standard and
novel therapeutic interventions, focusing on transcranial mag-
netic stimulation (TMS) in depression. We conclude by
addressing methodological considerations, limitations, and
avenues of future research that could aid in the integration
of neuroimaging into the clinical practice of psychiatry.
DYSFUNCTIONAL LARGE-SCALE NETWORKS IN
DEPRESSION

Functional connectivity studies of patients with MDD have
implicated an affective salience network, cognitive control
network, and default mode network (DMN). Connectivity
differences between cortical and subcortical components
within these large-scale neural networks have been associated
with characteristic symptoms of depression (25,26). Although
we summarize the most robust findings in this section,
discrepant findings are prevalent in the literature and likely
reflect pathophysiologic heterogeneity. Moreover, the net-
works described do not operate independently of one another.

Affective Salience Network

When functioning normally, an interconnected mesocortico-
limbic network guides motivation and behavior through proc-
essing of affective and salient stimuli (27,28). Meta-analyses of
both task-based (29,30) and resting-state (31) fMRI paradigms
have implicated the amygdala, ventral striatum, dorsal anterior
cingulate cortex (dACC), and insula as central hubs within this
circuit (24,32,33). In the present review, we refer to this
Biological Psychiatry: Cognitive Neuroscience and
interconnected large-scale brain network as the affective
salience network (Figure 1).

The amygdala is a critical node within this network involved
in processing of motivationally salient stimuli (34,35). One of
the most robust neuroimaging findings in MDD is abnormally
increased connectivity and heightened activation of the
amygdala (36,37), although the direction of observed effects
has been mixed (33,38). Dysfunctional connectivity between
the amygdala, supragenual anterior cingulate cortex (sgACC),
and insula and disrupted top-down prefrontal cortical control
have been strongly implicated in salience and emotion proc-
essing abnormalities found in patients with depression (21,24)
and adolescents at risk for MDD (39). Similarly, heightened
amygdala and insula activity was found in task-based para-
digms when processing negative stimuli (33), which signifi-
cantly correlated with disease duration and symptom severity
(40,41).

Conversely, patients with depression demonstrate attenu-
ated connectivity between the ventral striatum and other
regions involved in reward processing, including the dACC,
insula, and thalamus (42,43). Reward circuit hypoconnectivity
is consistent with underresponsive reward system activation in
MDD, supported by a wealth of animal and human neuro-
imaging data (20,44,45). Functional connectivity of the ventral
striatum shows a robust inverse relationship with anhedonia
(42) and overall depression severity (43), providing further
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support that this network subserves core aspects of MDD,
including anhedonia, amotivation, and depressed mood.

The dACC is a prominent cortical node within the affective
salience network that serves to assess and integrate emotion-
ally relevant stimuli with regulatory top-down control (46).
Reciprocal connections with subcortical components also
moderate sympathetic and autonomic effects underlying psy-
chomotor disturbances characteristic of depression (47).
Increased activation within the dACC in response to negative
stimuli in patients with MDD appears to play a critical role in
potentiating negatively biased information processing (33).
Regions of this circuit also project to the hypothalamus and
autonomic brainstem nuclei, which may contribute to the
manifestation of neurovegetative symptoms of depression,
including alterations in sleep, decreased energy, and change
in appetite (24).

DMN Dysfunction in Depression

The DMN (Figure 1) comprises brain regions that are preferentially
active in the absence of external stimuli (the resting state) and
become suppressed during experiences that focus one’s atten-
tion toward the external environment (48,49). Core regions of the
DMN include the medial prefrontal cortex (mPFC), posterior
cingulate cortex, precuneus, and lateral and inferior parietal
cortices (48). The DMN mediates spontaneous, internally gen-
erated thought and emotion (3,50,51). Consequently, this network
is thought to underlie self-referential processes, such as intro-
spection, formation of beliefs and emotions, and engaging in
mental simulations of future events (52).

Abnormalities within the DMN underlie self-ruminative pat-
terns of thought characteristic of MDD (i.e., an exaggerated
focus on internal thought at the expense of engaging with the
environment) (26,37). An increasing number of studies and
several meta-analyses have provided evidence of DMN hyper-
connectivity in MDD (53–55). DMN hyperconnectivity strongly
correlates with measures of self-rumination (23,56), as well as
with disease severity and duration (57). Moreover, hyper-
connectivity between the DMN and the sgACC has been
proposed to mediate the interaction with the affective salience
network via “affective-laden behavioral withdrawal” integrating
self-referential DMN-mediated processes with behavioral
manifestations of depression (58).

Also, DMN hyperconnectivity likely contributes to impaired
concentration, often found in depressed patients and thought
to result from attention difficulties (7). Normally, when attention
shifts from internally directed mentation to external stimuli,
DMN activity is suppressed, and the frontoparietal network
(FPN) (Figure 1) is activated (2). The dynamic interaction and
functional coupling between these two networks is disrupted
in depression (7,26). This disruption could explain the mis-
allocation of attentional resources in depression, with a
tendency toward DMN-mediated self-rumination at the
expense of allocating attentional resources toward the
external world.

Cognitive Control Network Dysfunction

The frontoparietal “task positive” cognitive control network
(FPN) (Figure 1) comprises the medial and superior frontal
cortex, including the dorsolateral prefrontal cortex (DLPFC),
264 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging M
inferior parietal cortex, and other brain regions that are active
during externally focused attention and goal-oriented task
performance (2). Deficits in concentration are a defining
symptom of MDD (59), and cognitive theories of depression
propose that hypoconnectivity of this network results in
impaired top-down regulation of aberrant emotional process-
ing, perpetuating a bias toward negative affect and depressed
mood (38,60). Widespread connectivity reductions have been
detected in frontoparietal regions implicated in executive
control and performance monitoring (22,61). In a recent
meta-analysis, Kaiser et al. (38) found that FPN hypoconnec-
tivity, especially of the DLPFC, was directly associated with
goal-directed attention deficits in depression. Decreased con-
nectivity within this network has been found at rest and in
response to negative, but not positive, stimuli, implicating this
region as contributing to inappropriate cognitive appraisal of
negative events (37,44).

Reduced connectivity of lateral prefrontal cortical regions,
involved in both cognitive processing and affect regulation,
may also contribute to emotion dysregulation and cognitive
biases in depression, which have been detected in
medication-naïve (62), medicated (63), and treatment-
resistant patients with MDD (64). While depression severity
correlates with amygdala and sgACC hyperconnectivity, it
inversely correlates with lateral orbital prefrontal cortical
activity (65). This suggests that cortical regions may have a
compensatory or regulatory role with respect to modulation of
the affective salience network. In a connectome-wide study of
medication-free patients, reduced DLPFC-amygdala connec-
tivity was associated with severity of depressive symptoms
(66). Psychotherapy has been found to increase activity within
the ventrolateral prefrontal cortex (67).

In summary, resting-state fMRI has provided insight into
underlying functional networks implicated in the pathophysi-
ology of depression. Dysfunctional connectivity of the affective
salience, cognitive control, and default mode networks
appears to underlie characteristic symptoms of depression,
including depressed mood, anhedonia, self-rumination, and
impaired concentration. Discrepant findings are prevalent in
the literature and likely reflect pathophysiologic heterogeneity;
this is not surprising given the marked clinical heterogeneity
with respect to symptom variation of patients meeting criteria
for MDD based on available diagnostic assessments. Resting-
state fMRI has helped characterize impairment within specific
networks that map onto symptom manifestations of depres-
sion. As such, it has the potential for use as a clinical
biomarker that both refines diagnostic criteria addressing
patient-specific symptoms and guides more targeted treat-
ment interventions for depression.
NEUROSTIMULATION TARGETED MODULATION OF
DYSFUNCTIONAL NETWORKS IN DEPRESSION

Effects of Antidepressants and ECT on Functional
Connectivity in Depression

Although antidepressants, psychotherapy, and ECT have been
available for decades, we are just beginning to shed light on
network changes elicited by these treatments. In healthy
volunteers, decreased connectivity between the mPFC and
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the hippocampus follows SSRI administration (68). In patients
with MDD, SSRIs have been shown to reduce DMN hyper-
activity (69,70); normalize hypoconnected thalamus-to-dACC
connectivity (71); and increase connectivity between the
hypothalamus and DLPFC, orbitofrontal cortex, anterior cin-
gulate cortex, insula, putamen, and caudate, while decreasing
connectivity between the hypothalamus, frontal gyrus, precu-
neus, thalamus, and cerebellum (72). In addition, several
groups have identified possible biomarkers for predicting
treatment outcome of SSRI administration but with inconsis-
tent results. Positive prediction tools for SSRI treatment
response include weaker dACC-DLPFC connectivity (73),
stronger sgACC anticorrelations, and weaker thalamocortical
connectivity (63). To date, however, we lack evidence dem-
onstrating a link between SSRI-driven normalization of abnor-
mal connectivity and improvement in clinical symptoms. There
has also been variability regarding whether these changes
relate to short-term SSRI administration (single dose or
subacute dosing) or acute treatment courses, and studies
investigating long-term effects are lacking.

Even fewer studies have evaluated the effect of ECT on
brain networks. Studies have demonstrated reduced hippo-
campal functional connectivity before treatment that increased
after treatment (74); increased homotopic connectivity in the
superior frontal, middle, and angular gyrus (75); and increased
connectivity within the DLPFC and posterior cingulate cortex
(76). Some of these neuroimaging findings correlated with
clinical improvement (74), whereas others did not (75). In a
larger study examining connectivity biomarkers of ECT
response, van Waarde et al. (77) found a positive correlation
between pretreatment connectivity and clinical outcome for
networks centered in the dorsal mPFC and anterior cingulate
cortex. Overall, these studies suggest that ECT appears to
increase functional connectivity in various widespread net-
works and that response to ECT may be predicted by baseline
connectivity. However, the relationship between network
localization and clinical response remains unclear.
Modulating Dysfunctional Brain Networks in
Depression

Although SSRIs and psychotherapy have been the mainstay
therapies for depression, 50% of treated patients fail to achieve
remission after 1 year (78). Additionally, ECT, although effective,
induces a generalized seizure, requires anesthesia, and can
cause retrograde amnesia. In the past decade, deep brain
stimulation and TMS have attempted to fill a crucial interventional
role in the treatment of depression. Deep brain stimulation
involves the implantation of intracranial electrodes that provide
high-frequency electrical pulses to modulate the activity of
specific brain regions. Although there is no clear consensus
regarding the optimal region(s) to stimulate for depression,
proposed regions include the subcallosal cingulate gyrus to
target mood (79), the ventral capsule/striatum to target persev-
erative thinking (80), and the medial forebrain bundle to target
anhedonia (81). Nonetheless, deep brain stimulation is an invasive
procedure, and recent trials have failed to demonstrate clinical
benefit (80–83).

TMS is a noninvasive method of targeted network modu-
lation that uses brief time-varying magnetic field pulses to
Biological Psychiatry: Cognitive Neuroscience and
induce electrical currents on the cortical surface. These
currents elicit action potentials, which propagate to down-
stream brain regions. Hence, TMS is a tool that can probe and
modulate neural networks in a targeted fashion. Application of
a single pulse (single-pulse TMS) has been used to map the
interconnectivity between cortical regions (84), whereas appli-
cation of pulses in a repetitive manner (repetitive TMS [rTMS])
is thought to elicit plasticity at the stimulation site and down-
stream regions.

Randomized clinical trials applying 10-Hz rTMS to the left
DLPFC for treatment of medication-resistant depression have
demonstrated clinical benefit (85–87). However, remission
rates for depression treated with rTMS are suboptimal at
,50%, which may be due to the inability to accurately localize
the DLPFC (88) or the fact that stimulation parameters are not
optimized for plasticity induction in particular networks. By
developing a mechanistic understanding at the brain circuit
level of the effects of rTMS in depression, we can critically
evaluate the hypothesis that normalizing dysfunctional net-
work connectivity will alleviate clinical symptoms. As such,
TMS may advance treatment of depression, while providing a
more thorough and mechanistic understanding of the disorder,
including at the individual patient level.

Despite the functionality and popularity of rTMS, few
studies have performed neuroimaging scans on patients to
test network changes after a single session or daily treatment
of .5-Hz left DLPFC rTMS, and no imaging study of clinical
rTMS has employed a control intervention arm. Speer et al.
(89) observed increased regional cerebral blood flow over the
left DLPFC, cingulate, amygdala, hippocampus, and thalamus
after 2 weeks of daily sessions of 20-Hz left DLPFC rTMS. By
contrast, 1-Hz left DLPFC rTMS decreased regional cerebral
blood flow over the right DLPFC, left temporal lobe, and
amygdala, with no change at the target site. Liston et al. (90)
reported resting-state fMRI changes following 5 weeks of daily
.5-Hz rTMS to the left DLPFC. Their findings showed that
rTMS decreased DMN hyperconnectivity and normalized FPN-
DMN anticorrelations, but did not alter pretreatment FPN
hypoconnectivity. Chen et al. (91) directly tested FPN-DMN
connectivity and found that single-pulse TMS to the FPN
induced negative blood oxygen level–dependent responses
(which have been linked to inhibitory processes) in the DMN,
suggesting that the FPN negatively regulates the DMN.

Although only a few studies have directly evaluated network
changes after rTMS in depression, multiple groups have
evaluated possible biomarkers to predict response to therapy.
Kimbrell et al. (92) conducted a crossover randomized trial by
applying 2 weeks of daily left DLPFC rTMS at 1 or 20 Hz
followed by 2 weeks of treatment with rTMS at the other
frequency. They demonstrated a negative correlation between
antidepressant response and the frequency of stimulation.
Furthermore, responsiveness was predicted by baseline
DLPFC hypometabolism in the 20-Hz rTMS group and hyper-
metabolism in the 1-Hz rTMS group. Liston et al. (90) reported
that better clinical outcome was predicted by subgenual-DMN
functional connectivity. Consistent with this finding, Salomons
et al. (93) found that higher baseline sgACC-mPFC and
sgACC-DLPFC connectivity and lower corticothalamic, corti-
costriatal, and corticolimbic connectivity were associated with
greater reduction of symptoms. More recently, connectivity
Neuroimaging May 2016; 1:262–270 www.sobp.org/BPCNNI 265
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analyses in healthy and depressed subjects showed that these
DLPFC sites are also associated with stronger DLPFC-sgACC
anticorrelation, although no subject actually received rTMS
(94). Multiple biomarkers, including local metabolic activity and
within-network as well as between-network connectivity,
appear to predict clinical outcome after rTMS. However, as
these studies exhibit heterogeneity with respect to the bio-
marker type and effect, we currently lack a single or set of
biomarkers that consistently predicts treatment outcome
across studies.
rTMS-Induced Plasticity Within Brain Networks

Behavioral studies after .5-Hz left DLPFC rTMS in healthy
subjects have shown variable results, eliciting faster reaction
times in some subjects (95) and no effect on behavior in other
subjects (96). Although behavioral tasks enhance our under-
standing of the cognitive changes elicited, brain-derived
measures from neuroimaging provide important insight into
the neurophysiologic basis of plasticity induction after stim-
ulation. If the “excitatory rTMS” plasticity effect consistently
observed in M1 applies to other cortical regions, it should
follow that rTMS should modulate both local and downstream
connections. Wang et al. (97) demonstrated that daily 20-Hz
parietal rTMS enhanced memory and increased resting-state
fMRI between the parietal cortex (target site) and the func-
tionally connected hippocampus. Halko et al. (98) applied 10-
Hz rTMS to the lateral and medial cerebellum, which before
the stimulation exhibited strong functional connectivity with
nodes of the DMN and dorsal attention network, respectively.
Stimulation to the lateral cerebellar DMN increased functional
connectivity within the DMN, whereas medial cerebellar stim-
ulation did not change functional connectivity within the dorsal
attention network.Thus, .5-Hz rTMS appears to elicit func-
tional connectivity changes that outlast the time of stimulation;
however, the direction of modulation within the stimulated
network is inconsistent. Indeed, .5-Hz rTMS to a node within
a network may enhance (97,98), weaken, or provide no change
to (98) the within-network connectivity, depending on the
network targeted and the frequency of stimulation (99).

Several resting electroencephalography studies have eval-
uated network changes after DLPFC rTMS (100). Studies
applying stimulation to the DLPFC found increased delta
(101,102) and theta (101) power local and unilateral to the
DLPFC stimulation site, whereas beta and gamma power at
the DLPFC decreased bilaterally. These changes typically did
not last longer than 10 minutes after rTMS. Continuous theta
burst stimulation, a relatively new protocol thought to be more
effective than typical .5-Hz rTMS, was applied to the DLPFC
in healthy subjects, and changes were observed in the alpha
band that persisted for 50 minutes after rTMS (103).

In addition to power modulation, rTMS may alter either the
synchronicity (or coherence) between brain regions or
aspects of the sleep/wake cycle that relate to the patho-
physiology of depression. Jing and Takigawa (104) measured
electroencephalography coherence in a group of healthy
subjects calculated before and after 10-Hz left DLPFC rTMS.
After stimulation, directed but not ordinary coherence
increased globally between the stimulation site and other
brain regions.
266 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging M
Although consistent results have been observed with rTMS
applied to motor cortex in healthy individuals, rTMS applied to
the DLPFC and other cortical regions has shown conflicting
results. Mixed results regarding behavioral outcomes seem to
be provided by rTMS .5 Hz at the DLPFC. There is relatively
consistent evidence that rTMS enhances resting-state fMRI
functional connectivity between the stimulation site and within
network nodes for most networks probed and promising but
sparse evidence that rTMS may increase TMS-evoked poten-
tials after stimulation (100).
PATHWAYS TOWARD MORE TARGETED
INTERVENTION

Functional connectivity is promising as a means of improving
clinical subtyping that more precisely maps onto dysfunction
within neural networks. In the present review, we summarized
connectivity abnormalities in large-scale networks found in
depression as well as the changes evoked by TMS (Figure 2).
Obtaining patient-specific functional connectivity maps and
using resting-state fMRI to characterize abnormalities in brain
networks may provide an image-guided tool for neurostimu-
lation and other targeted interventions. Although TMS has
largely targeted cognitive network impairment in depression
(through stimulation of the FPN), it has the potential to also
modulate networks implicated in the pathophysiology of other
characteristic symptoms of depression, such as anhedonia
and rumination, by targeting abnormalities in the affective
salience network and DMN, respectively.

A primary “limitation” to address within the functional
connectivity neuroimaging literature is the heterogeneity of
reported findings, which has been considered a limitation in
most studies of depression. Given the symptom heterogeneity
encompassed within clinical diagnostic criteria of MDD, it not
surprising that there are mixed findings with respect to func-
tional connectivity abnormalities reported in this patient pop-
ulation. If we were to capitalize on heterogeneity to identify
depression subtypes based on symptom clusters that map
onto underlying connectivity differences, we could instead
apply this information to develop a more refined diagnostic
system and treatment approach.

Integrating neuroimaging biomarkers with vulnerability
genes (i.e., genetic and epigenetic determinants) as well as
environmental components of risk and resilience endopheno-
types will further assist in the development of improved
diagnostic and treatment interventions for depression.
Depression-related susceptibility genes, such as the risk S
allele of the serotonin transporter gene, have shown an
association with differences in functional connectivity in
affective salience (105) and DMN circuitry (62,106,107). Early
life stress has also been found to alter network connectivity,
leading to functional alterations in amygdala, insula, and dACC
activity during emotion regulation (108) and cognitive proc-
essing (109). Up until now, the focus of depression treatment
has been on correcting symptoms associated with deficien-
cies within brain circuits. A critical, and yet to date unexplored,
area of investigation is assessing whether prospective
strengthening of intact circuitry can augment resilience in at-
risk patients and prevent or reduce severity of depression. We
are gaining a better understanding of the underlying plasticity
ay 2016; 1:262–270 www.sobp.org/BPCNNI
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Figure 2. Summary of network connectivity abnormalities in depression and changes following transcranial magnetic stimulation modulation. (Left)
Abnormal brain networks observed with resting-state functional magnetic resonance imaging, including amygdala hyperconnectivity within the affective
salience network (36,37); hypoconnectivity of reward circuitry, centered around the ventral striatum (43); hypoconnectivity of the frontoparietal network (38);
and hyperconnectivity of the default mode network (53). (Right) Effect of targeted neuromodulation on abnormal brain networks. Transcranial magnetic
stimulation to the dorsolateral prefrontal cortex increases regional blood flow locally (89) and normalizes a hyperconnected default mode network and
hypoconnected frontoparietal network (90). amyg, amygdala; dACC, dorsal anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; mPFC, medial
prefrontal cortex; PCC, posterior cingulate cortex; TMS, transcranial magnetic stimulation; VS, ventral striatum.
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of neural networks and differential genetic expression under-
lying experience-dependent plasticity (110). A recent study
investigating risk and resilience in patients at high familial risk
for depression detected significant connectivity differences
between regions of the DMN, affective salience network, and
cognitive control network in risk and resilient endophenotypes
(111). Shifting the focus toward at-risk individuals and
strengthening network connectivity underlying resilience
through interventions such as mindfulness, psychotherapy,
and possibly TMS, instead of targeting pathologic connectiv-
ity, may allow for a primary prevention approach to treating
depression.

With the relatively recent availability of large-scale func-
tional connectivity imaging data sets and advanced analytic
methods, characterization of individual-level circuitry and
targeting of neuromodulation may be more feasible than
previously thought (112). For example, a method has been
recently published for reliable individualized parcellation of
cortex based on a template connectivity atlas (113). Similarly,
subject-specific patterns of resting connectivity can serve as a
“fingerprint” that uniquely identify that individual and predict
their cognitive functioning (114). The network that is most
variable and underlies both the individualization of network
parcellation and the subject-specific fingerprint is the FPN,
making this a prime target for personalization of TMS inter-
vention. As resting-state fMRI can detect short-term and
long-term plasticity within networks (7–9), it can also be used
as a metric to index whether the targeted circuit-level cha-
nge was achieved. In sum, the study of connectivity and
understanding of depression as well as development of
Biological Psychiatry: Cognitive Neuroscience and
network-modulatory interventions has matured to the point
where we can now address the critical challenges facing our
field rather than pointing to them as future goals.
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