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Abstract
Concurrent single-pulse TMS-EEG (spTMS-EEG) is an emerging noninvasive tool for probing causal

brain dynamics in humans. However, in addition to the common artifacts in standard EEG data,

spTMS-EEG data suffer from enormous stimulation-induced artifacts, posing significant challenges

to the extraction of neural information. Typically, neural signals are analyzed after a manual time-

intensive and often subjective process of artifact rejection. Here we describe a fully automated

algorithm for spTMS-EEG artifact rejection. A key step of this algorithm is to decompose the

spTMS-EEG data into statistically independent components (ICs), and then train a pattern classifier

to automatically identify artifact components based on knowledge of the spatio-temporal profile of

both neural and artefactual activities. The autocleaned and hand-cleaned data yield qualitatively

similar group evoked potential waveforms. The algorithm achieves a 95% IC classification accuracy

referenced to expert artifact rejection performance, and does so across a large number of spTMS-

EEG data sets (n590 stimulation sites), retains high accuracy across stimulation sites/subjects/pop-

ulations/montages, and outperforms current automated algorithms. Moreover, the algorithm was

superior to the artifact rejection performance of relatively novice individuals, who would be the

likely users of spTMS-EEG as the technique becomes more broadly disseminated. In summary, our

algorithm provides an automated, fast, objective, and accurate method for cleaning spTMS-EEG

data, which can increase the utility of TMS-EEG in both clinical and basic neuroscience settings.
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1 | INTRODUCTION

1.1 | Importance of spTMS-EEG and artifact rejection

Neuroimaging has provided tools to noninvasively examine brain

regions that are activated during specific cognitive tasks, functionally

correlated at rest, and abnormal in neurological and psychiatric disor-

ders. However, these findings provide only an observational view of

how brain activity and function are related, and importantly lack the

causal inference that is often necessary to dissect circuits and guide

therapeutic interventions. Single-pulse transcranial magnetic stimula-

tion (spTMS) coupled with electroencephalogram (EEG) provides the

causal probe and measurement tools, respectively, that can be utilized

to study systems-level causal brain dynamics in both healthy andWei Wu and Corey J. Keller contributed equally to this work.
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clinical populations (Ferrarelli et al., 2008; Harquel et al., 2016;

Massimini et al., 2005; Morishima et al., 2009; Premoli et al., 2014; Sun

et al., 2016). However, in addition to the conventional EEG artifacts

(Fisch, & Spehlmann, 1999), spTMS-EEG suffers from multiple

stimulation-related artifacts including those derived from the stimula-

tion pulse itself (Veniero, Bortoletto, & Miniussi, 2009), scalp muscle

activation (Mutanen, Mäki, & Ilmoniemi, 2013), electrode movement or

polarization, sensory system activation (Massimini et al., 2005), eye

blinks, coil clicks (Nikouline, Ruohonen, & Ilmoniemi, 1999; Ter Braack,

de Vos, & van Putten, 2015), and coil recharge (see Figure 1 for exam-

ples of main types of artifacts and neural signals) (Ilmoniemi, & Kičić,

2010). These artifacts may directly impact the spatio-temporal mor-

phology of the TMS-evoked potentials (TEPs) that are of interest in

spTMS-EEG (e.g., P30, N45, P60, N100, P180, etc.) (Rogasch, Thom-

son, Daskalakis, & Fitzgerald, 2014). Recent advances in the EEG

recording hardware as well as experimental manipulations can help

address some of these artifacts. For instance, with direct current (DC)-

coupling, broad measurement ranges and high sampling rates, or with

sample-and-hold circuits, amplitude saturation caused by the TMS

pulse can be prevented. It has also been shown that the TMS pulse

artifact as well as the electrode polarization artifact can be largely

reduced by reorienting the EEG lead wires perpendicular to the coil

handle (Sekiguchi, Takeuchi, Kadota, Kohno, & Nakajima, 2011). In

addition, delay of the coil recharge, which is possible with some TMS

machines (e.g., MagVenture stimulators, MagVenture, Denmark), can

shift the recharge artifact beyond the time periods of interest (Rogasch

et al., 2013). However, it is not possible to avoid every stimulation-

related artifact before data analysis. For instance, although the scalp

muscle activation can be reduced by stimulating away from regions

with dense scalp muscles such as temporalis and frontalis, it is unavoid-

able when the regions of interest are located in the frontal and tempo-

ral cortices. As a result, removing artifacts from the spTMS-EEG data

becomes a laborious endeavor, which is typically performed through

manual identification/rejection of artefactual channels and epochs as

FIGURE 1 Spatio-temporal-spectral patterns of neural and artefactual ICA components. For each IC, the three panels are (from top to

bottom) the scalp map, time courses of four exemplary epochs, and mean power spectrum across all epochs. The signs of the scalp maps
and time courses are arbitrary due to the scaling ambiguity of ICA. The decay artifact includes the TMS-evoked muscle artifact, electrode
movement artifact, and electrode polarization artifact. The TMS-evoked blink artifact is time-locked to the TMS pulse, whereas the vertical
eye movement artifact is non-time-locked to the TMS pulse. The EKG artifact is highly variable across subjects in its spatial distribution—
the activation patterns may be rotational with respect to one another. Unlike the TMS-evoked muscle artifact, the persistent EMG artifact
is higher in frequencies and may appear in any electrodes. Neural ICs typically have dipole-like scalp maps, and 1/f shape power spectra
[Color figure can be viewed at wileyonlinelibrary.com]
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well as removal of artifact-associated independent components (ICs)

extracted by independent component analysis (ICA) (Rogasch et al.,

2016).

1.2 | Review of current algorithms

Developing an automated algorithm to remove artifacts would stand-

ardize preprocessing by reducing bias from human influence (e.g., due

to fluctuating changes in judgment or varying levels of artifact rejection

skills), decrease processing time, and allow for near real-time processing

for closed-loop applications. While there has been a recent push to

develop automated artifact rejection methods for standard EEG data

(Bigdely-Shamlo, Mullen, Kothe, Su, & Robbins, 2015; Jungh€ofer,

Elbert, Tucker, & Rockstroh, 2000; Mognon, Jovicich, Bruzzone, &

Buiatti, 2011; Nolan, Whelan, & Reilly, 2010; Winkler, Debener, M€uller,

& Tangermann, 2011), to our knowledge only semi-automated methods

for concurrent spTMS-EEG data have been reported (Rogasch et al.,

2016).

Early automated EEG data cleaning methods used statistical

thresholding approaches to detect artifacts in channel space (Jungh€ofer

et al., 2000); however, researchers quickly shifted to the use of more

advanced techniques, including regression, adaptive filtering, time-

frequency decomposition, and blind source separation (Urig€uen, & Gar-

cia-Zapirain, 2015). Of particular interest is ICA, a blind source separa-

tion technique that effectively decomposes the multichannel EEG data

into multiple ICs belonging to either artifacts or neural sources, building

on the observation that artifact and neural signals possess distinguish-

able spatio-temporal patterns (Delorme, Sejnowski, & Makeig, 2007;

Frølich, Andersen, & Mørup, 2015; ; Mognon et al., 2011; Nolan et al.,

2010; Winkler, Haufe, & Tangermann, 2011). Artifact rejection then

becomes a binary pattern classification problem of distinguishing

between artefactual and neural ICs. Both unsupervised and supervised

methods have been proposed to solve this classification problem. For

the unsupervised methods, Viola et al. developed a semi-automatic

algorithm based on user-defined templates to correct eye blink, hori-

zontal eye movement, and electrocardiogram (EKG) artifacts (Viola

et al., 2009). Mognon et al. (2011) introduced the ADJUST (Automatic

EEG artifact Detection based on the Joint Use of Spatial and Temporal

features) algorithm that uses an expectation-maximization (EM)-based

approach to automatically threshold the spatio-temporal features for

different artifact types. Nolan et al. (2010) described the FASTER (Fully

Automated Statistical Thresholding for EEG artifact Rejection) algo-

rithm that rejects bad channels, epochs, and ICs by statistically thresh-

olding a handful of spatio-temporal features. For the supervised

methods, Winkler et al. (2011) developed the MARA (Multiple Artifact

Rejection Algorithm) algorithm in which a sparse linear classifier was

trained to automatically classify the ICs. It was found that the use of

two spatial, one temporal, and three spectral features could achieve

the best classification results. Furthermore, MARA could generalize to

a variety of EEG paradigms and might improve the performance of

brain–computer interfaces (BCIs) (Winkler et al., 2014).

As spTMS-EEG data are considered noisier than standard EEG

data due to stimulation-induced artifacts, various additional methods

were developed (Atluri et al., 2016; Casula et al., 2017; Hernandez-

Pavon et al., 2012; Herring, Thut, Jensen, & Bergmann, 2015; Korho-

nen et al., 2011; Mäki, & Ilmoniemi, 2011; Mutanen et al., 2016;

Rogasch et al., 2014, 2016). In general, these methods used signal pro-

jection techniques to find spatial filters that could suppress the artifacts

while leaving the neural signals largely intact. The predominant ones

were based on blind source separation that identified artefactual com-

ponents via time-consuming and potentially error-prone visual inspec-

tion. In particular, TMSEEG and TESA are two MATLAB toolboxes

designed for the ICA-based artifact rejection and analysis of spTMS-

EEG data (Atluri et al., 2016; Rogasch et al., 2016). While these previ-

ous efforts have improved data quality, we still currently lack a fully

automated and accurate TMS-EEG artifact rejection algorithm. Devel-

opment of such an algorithm would allow a broader application of

spTMS-EEG to both the lab and clinical settings.

Automatic artifact rejection for spTMS-EEG data is challenging for

the following reasons. First, the morphology of the same artifact type

may vary across subjects and stimulation sites, requiring that robust

and invariant features be identified. Second, there are artifact types

unique to spTMS-EEG data, including TMS-evoked scalp muscle arti-

facts and electrode movement/polarization artifacts. These artifacts are

time-locked to the TMS pulse and can overlap with the potentials of

interest. Moreover, due to their large amplitude and rapid changes,

these artifacts, henceforth referred to collectively as the decay arti-

facts, can have considerable impact on the signals in the nearby time

periods by interacting with the frequency filtering. In addition, the typi-

cal spTMS-EEG time course may contain a series of temporally segre-

gated TMS-evoked potentials (TEPs) (Ilmoniemi & Kičić, 2010). For

automated artifact rejection, new features are required to capture the

spatio-temporal characteristics of these components. Third, spTMS-

EEG has been used to probe the causal brain dynamics by stimulating

varying brain regions, subjects, or populations in different studies (Fer-

rarelli et al, 2008; Harquel et al., 2016; Massimini et al., 2005). It

remains unknown whether an automated artifact rejection method can

be trained once and successfully applied to new data. In order to

address these challenges, here we describe a fully automated ICA-

based artifact rejection algorithm that combines temporal and spectral

features to separate artifacts from neural sources. We first describe the

basis of the artifact rejection pipeline and subsequently quantify the

accuracy of our algorithm benchmarked against manual rejection. Over-

all, we provide the first evidence of a fully automated artifact rejection

algorithm for spTMS-EEG that is comparable to manual artifact rejec-

tion and generalizes across stimulation sites, subjects, and populations.

2 | MATERIALS

2.1 | Overview

Here, we present an overview of our proposed algorithm, termed Auto-

mated aRTIfact rejection for Single-pulse TMS-EEG Data (ARTIST),

designed to automatically remove a wide variety of artifacts from the

spTMS-EEG data. The workflow of ARTIST can be found in Figure 2.

The algorithm consists of three stages, each aimed at removing specific
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types of artifacts. The first stage removes large-amplitude TMS-related

artifacts, including the TMS pulse artifact and decay artifacts. The sec-

ond stage rejects bad epochs and channels. The third stage removes

the remaining artifacts, including the residual decay artifacts, ocular

artifacts, EKG artifacts, and persistent EMG artifact. The details and

rationale of each step of ARTIST are described below.

2.2 | The ARTIST algorithm

2.2.1 | Removing large-amplitude artifacts

Removing the TMS pulse artifact

Each spTMS pulse is followed by a large and transient pulse-shape arti-

fact in the EEG data, with a magnitude into the millivolt-to-volt range

depending on the intensity of the stimulation. With low electrode

impedance (<5 kX) and a high sampling rate (e.g., >5 kHz), the duration

of the TMS pulse artifact is typically <10 ms. The enormous strength

of the TMS pulse artifact precludes the use of signal processing

approaches from removing the artifact while keeping the neural infor-

mation intact (Ilmoniemi & Kičić, 2010). We thus discard the initial 10

ms post-TMS data segment and then use the cubic interpolation to

replace the discarded segment. To reduce the file size, the EEG data

are downsampled to 1 kHz afterward. The cubic interpolation ensures

smooth transition edges and therefore avoids the ringing artifact intro-

duced by the anti-aliasing filter during the downsampling step (Rogasch

et al., 2016).

Removing the decay artifacts

Frequency filters are effective tools to remove unwanted components

(e.g., DC drift, AC line noise, high-frequency noise, et al.) that do not

spectrally overlap with neural information within the data. Nonetheless,

frequency filtering of EEG data containing strong decay artifacts can

lead to substantial ringing artifacts in the nearby time period (Widmann

& Schr€oger, 2012), also known as the Gibbs phenomenon in signal

processing. More specifically, low-pass and notch filtering often lead to

fast changing ringing artifacts, while high-pass filtering causes slow drift

of the EEG. These artifacts can even appear in the baseline EEG prior

to the TMS pulse if zero-phase filtering in both forward and backward

directions is applied (Rogasch et al., 2016). Hence, it is crucial to

remove the strong decay artifacts from the EEG before any frequency

filtering is performed.

In ARTIST, strong decay artifacts are removed in a first ICA run.

The following equation gives the generative model of the ICA:

X5BY

where X is the EEG data matrix of C channels (rows) by T time points

(columns). B is the mixing matrix of C channels (rows) by K ICs (col-

umns), with each column being the spatial map of an IC. Y is the com-

ponent signal of K ICs (rows) by T time points (columns), with each row

being the time course of an IC (concatenated across epochs for

epoched data). In this model, only X is known; both B and Y are

unknown. ICA aims to estimate Y from X, based on the assumption

that the time courses of the ICs are statistically independent from each

other. In ARTIST, the Infomax algorithm (Bell, & Sejnowski, 1995) is

used to perform the ICA. To address the scaling ambiguity of the ICA

(i.e., a scaling of the columns of B can be offset by applying an inverse

scaling of the corresponding rows of Y), each column of the estimated

B is normalized to have unit variance.

To remove strong decay artifacts, slow DC drift is first removed

from the continuous EEG data by subtracting the mean of each epoch

from each time point in the epoch. Next, EEG data are fed into ICA,

and ICs with mean magnitude above a certain threshold (30 mv by

default) within the first 50 ms after the TMS pulse are rejected. Note

that baseline correction is not used for removing the DC drift as it may

reduce the reliability of ICA (Groppe, Makeig, & Kutas, 2009).

2.2.2 | Rejecting bad epochs and electrodes

Removing the AC line noise and high-frequency noise via fre-

quency filtering

Following decay artifact removal, continuous EEG recordings are high-

pass filtered (1 Hz cutoff, zero-phase FIR filter), which facilitates ICA

estimation (a) by increasing the mutual independence between sources,

as low frequency trends are likely dependent, and (b) by enhancing the

FIGURE 2 Workflow of the ARTIST algorithm. ARTIST consists of three stages, each aimed at removing certain types of artifacts. The first
stage removes large-amplitude TMS-related artifacts (TMS pulse artifact and decay artifacts) from the continuous data. The second stage fil-

ters the continuous data to remove the AC line noise and high-frequency noise, and then rejects bad epochs and channels from the
epoched data. The third stage removes the remaining artifacts (residual decay artifacts, ocular artifacts, EKG artifact, and persistent EMG
artifact) from the epoched data, after which the data are rereferenced to the common average and baseline corrected
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dipolarity of the ICs (Winkler et al., 2015). In addition, a 100-Hz zero-

phase FIR low-pass filter is employed to attenuate high-frequency

noise, and a 60 Hz zero-phase FIR notch filter removes 60 Hz AC line

noise. The filtered data are then epoched with respect to the TMS

pulse (2500 to 11500 ms by default).

Automated rejection of bad epochs

Bad epochs are those contaminated with nonstereotyped artifacts such

as those arising from subject motion (e.g., head movement, scalp

scratch, jaw clench, talking, swallowing, throat clearing). In general,

motion artifact is spatially widespread and may contaminate all chan-

nels in an epoch. These artifacts must be pruned prior to IC rejection

(Section 2.2.3) as they may introduce nonlinearities into the EEG data,

requiring a large number of ICs to capture the variability of all the arte-

factual contributions and thus reducing the number of ICs available for

separating other neural and artifact sources (Delorme et al., 2007).

For bad epoch rejection, we define the z-score of the magnitude

of each epoch (0–50 ms post-TMS EEG is excluded from the analysis

time window to decrease interference from the residual decay artifact)

and channel as follows:

zn;c5
an;c2mc

sc

where an;c is the average magnitude of the n-th epoch and c-th chan-

nel, mc is the mean of the average magnitude across epochs for the c-

th channel, and sc is the standard deviation of the average magnitude

across epochs for the c-th channel. The epoch-channel combinations

where zn;c is greater than a predefined threshold (3 by default) are then

determined. Among them, epochs that appear in more than 20% of all

channels are rejected in all channels. For epochs appearing in no more

than 20% of all channels, the EEG values in these channels are replaced

from the adjacent channels by the spherical interpolation approach

(Perrin, Pernier, Bertrand, & Echallier, 1989).

Note that it is assumed here that the proportion of bad epochs is

low. For data sets with artifacts on a large number of epochs, the aver-

age magnitude and standard deviation may be quite high, and an unde-

sirably low number of epochs will be rejected. A warning message will

be displayed showing the channels in which the standard deviation of

the average magnitude across epochs is above a certain threshold (30

mV by default).

Automated rejection of bad electrodes

Bad electrodes, including faulty, disconnected, and flat electrodes, pro-

duce abnormal activity distinct from neighboring electrodes. Therefore,

to remove bad electrodes, the maximum correlation coefficient of the

EEG at each electrode with the rest of the electrodes is calculated for

each epoch (0–50 ms post-TMS EEG is excluded from the analysis time

window to decrease interference from the residual decay artifact). An

electrode is labeled as bad if the maximum correlation coefficient is

below a predefined threshold (0.4 by default) for more than 2% epochs.

The performance of bad electrode rejection can be affected by the

choice of the reference that may alter the EEG spatial correlation struc-

ture. Hence, it is crucial to choose a reference that is clean and as inac-

tive as possible. Referencing to a particular electrode runs the risk of

contaminating the EEG at all the electrodes if the EEG at the reference

electrode is highly noisy, thereby potentially inflating the correlation

coefficients between the EEG at different electrodes. To avoid this, the

common average reference is a typically used “inactive” reference but it

may be highly skewed by an extreme outlier electrode. To address the

interaction between referencing and bad electrode rejection, we used a

robust referencing algorithm (Bigdely-Shamlo et al., 2015) that finds the

“true” common average reference and detects bad electrodes in an iter-

ative manner. More specifically, the algorithm proceeds as follows:

Initialization: EEG5EEG data, Bad electrode list5 [].

1. EEGtemp5EEG2median(EEG), where median(EEG) is the

median of the EEG at all the electrodes;

2. Detect bad electrodes from EEGtemp based on the maximum cor-

relation coefficient and add them to the bad electrode list;

3. EEGtemp5EEG2mean(EEGinterp), where EEGinterp is the

mean of the EEG with all the bad electrodes interpolated;

4. Repeat steps 2–3 until the bad electrode list does not change.

5. Reject and interpolate the bad electrodes in EEG;

6. EEG5EEG2mean(EEG).

The maximum correlation criterion can only identify single noisy elec-

trodes not resembling any other electrodes. However, in some situa-

tions a local cluster of electrodes may become artefactual together in

which case electrode correlations will be high within each cluster. To

address this issue, the random consensus method (RANSAC) method is

employed to detect noisy clusters of electrodes following the maximum

correlation criterion (Bigdely-Shamlo et al., 2015). More specifically,

RANSAC uses a random subset (25% by default) of electrodes to pre-

dict the EEG of each electrode (excluded from the subset) in each

epoch. The prediction is repeated 50 times. The correlation coefficients

of the predicted EEGs and the actual EEG of each electrode are then

calculated. An electrode is bad if the 50 percentile of the correlation

coefficients is less than a threshold (0.75 by default) on more than a

certain fraction of epochs (0.4 by default).

The EEG values in the rejected channels are then replaced from

the adjacent channels by the spherical interpolation approach.

2.2.3 | Removing remaining artifacts

Following bad electrode and epoch rejection, the remainder of EEG

artifacts—including the residual decay artifact, ocular artifact, EKG

artifact, and persistent EMG artifact—are removed via automated IC

rejection in a second ICA run. A summary of automated IC rejection is

shown in Figure 3. In particular, based upon the features defined in

Winkler et al. (2011) for standard EEG, we proposed a set of features

that capture the spatio-temporal-spectral patterns of the neural and

artefactual sources for spTMS-EEG. Note that these features are

used in conjunction rather than in isolation to determine the label of

each IC.

1. Dynamical range f1

The dynamical range feature is defined as the log absolute differ-

ence of the maximum and minimum activation in the scalp map b:
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f15log jmax
i

bið Þ2min
i

bið Þj

where bi denotes the scalp map of the i-th IC. An artefactual IC

oftentimes has a large dynamical range. Note that the logarithmic

transform is employed to improve the normality of the feature.

2. Regional activation f2~6

We consider the regional activation to be the absolute value of

the average over the activations in the electrodes located within

the central, frontal, occipital, and temporal regions of the scalp

(Figure 4a):

f25logjmean bið Þj; i 2 central region

f35logjmean bið Þj; i 2 frontal region

f45logjmean bið Þj; i 2 occipital region

f55logjmean bið Þj; i 2 left temporal region

f65logjmean bið Þj; i 2 right temporal region

For any electrode montage, these regions can be automatically

defined based on the spherical coordinates (r; u; u) of the electro-

des, where r is the radial distance from the center of the head, u is

the polar angle from the z-axis (toward vertex), and u is the azi-

muthal angle in the x (toward nose)–y (toward left ear) plane. Spe-

cifically, the electrodes contained in each region are defined as

follows: central (u < 70�); frontal (juj � 60� and juj � 60�); occipi-

tal (juj � 70� and155� � juj � 180�); left temporal (juj � 70�

and 30� � u � 150�); left temporal (juj � 70� and2150� �
u � 230�).

3. Border activation f7

The maximum activation of a neural IC’s scalp map is unlikely at a

border electrode. Therefore, if the maximum activation in the scalp

map occurs at a border electrode (Figure 4a), the border activation

feature is set to 1, otherwise 0:

f751; if arg max
i

jbijð Þ 2 border region

4. Horizontal eye movement f8

The horizontal eye movement artifact has a distinctive scalp map

with activations of opposing polarities in the left and right anterior

electrodes above the eyes (Fisch et al., 1999; Figure 4c). This

allows us to define the corresponding feature as the absolute dif-

ference between the mean weight of the electrodes above the left

eyes and that of the electrodes above the right eyes:

f85logjmean b ið Þ
LE

� �
2mean b ið Þ

RE

� �
j

where b ið Þ
LE and b ið Þ

RE deonte the weights of the electrodes above the

left and right eyes in the scalp map of the i-th IC, respectively. The

electrodes contained in LE and RE are defined as follows: LE

(100� � u � 130� and 40� � u � 60�); RE (100� � u � 130� and

2 60� � u � 240�).

5. Blink/vertical eye movement f9

Similarly, the blink/vertical artifact IC has a scalp map with pre-

dominantly middle anterior activations (Fisch et al., 1999; Figure

4c). The absolute mean weight of the anterior electrodes in the

middle of both eyes:

f95logjmean b ið Þ
B

� �
j

where b ið Þ
B denotes the weights of the anterior electrodes in the

middle of both eyes in the scalp map of the i-th IC. The electrodes

contained in B are defined as follows: B (90� � u � 100�

and juj � 40�).

FIGURE 3 Pattern classification to remove bad components. (a) Spatial and (b) spectral-temporal features of the training ICs are used to
train a Fisher linear discriminant classifier. The IC labels are provided by EEG experts. The outputs of the pattern classifier are a set of
weights that are then applied to the ICs of each new data set to reject artefactual components
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6. EKG spatial feature f10

The EKG artifact is a poorly formed QRS complex time-locked

to cardiac contractions that is most prominent when the sub-

ject’s neck is short and wide (Fisch et al., 1999). Typically, the

EKG IC has a scalp map with diffuse activations in the lateral

frontal and lateral posterior regions of opposing polarities.

However, the specific activation locations vary across subjects,

with their scalp maps rotational relative to each other (see the

EKG ICs in Figure 1). To achieve rotational invariance, the fol-

lowing detection algorithm is proposed to detect the EKG spa-

tial map:

i The two lateral regions of opposing polarities are first identified

for each IC. Specifically, each set of outermost electrodes (Fig-

ure 4d) that span an azimuthal angle of 608 are determined.

The positive lateral region is identified as the set of outermost

electrodes with the maximum weight sum, and the negative lat-

eral region is identified as the outermost electrodes with the

minimum weight sum.

ii A template bK is made by setting the weights of the outermost

electrodes in the positive lateral region to 1s, the weights of

the outermost electrodes in the negative lateral region to 21s,

and the weights of the remaining electrodes to 0s.

iii For each IC, if the absolute correlation coefficient between the

scalp map b and the template bK exceeds a preset threshold ԑ

(0.6 by default), the binary EKG spatial feature f10 is set to 1,

otherwise 0:

f1051; ifjr b; bKð Þj>ԑ

7. EKG temporal feature f11

The EKG artifact has a length of �50 ms in each QRS complex and

a frequency between 1 and 1.67 Hz. Inspired by prior EKG literature

(Kadambe, Murray, & Boudreaux-Bartels, 1999), here we use a

robust algorithm based on the maximal overlap discrete wavelet

transform (MODWT) (Percival, & Walden, 2006) to detect the QRS

complexes in the time course of each IC (Figure 5a). By using a

wavelet that resembles the QRS complex in shape, higher specificity

of the EKG IC can be achieved by detecting peaks at an appropriate

scale in the wavelet subspace than in the original signal space. More

specifically, our detection algorithm proceeds as follows:

i For the i-th IC, let yi denote the i-th row of Y, normalized to

have unit variance. Decompose yi using the Daubechies least-

asymmetric wavelet with four vanishing moments (’sym4’). The

depth of the decomposition, M, is determined by Fs/

2M11<1000/50<Fs/2M, where Fs is the sampling rate of the

EEG data. For instance, when Fs51000 Hz,M55.

ii Reconstruct a signal ui using only the scaling coefficients at

scale M, which corresponds to Fs/2M11 - Fs/2M Hz.

iii Identify the number of peaks in juij. The minimum inter peak

distance is set to 600 ms to match the frequency of the EKG

artifact.

iv If the number of peaks is greater than a preset threshold J

(empirically determined to be 0.8�N�T in ARTIST, where N is

FIGURE 4 Electrodes used for constructing different spatial features. (a) Electrodes for the regional activation features. The electrode montage
follows an equidistant arrangement extending down from the cheekbone back to the inion. (b) A subset of 34 electrodes for assessing the
intermontage generalization performance of ARTIST. (c) Electrodes for the horizontal eye movement and blink/vertical eye movement features.

(d) Outermost electrodes used to compute the EKG spatial feature [Color figure can be viewed at wileyonlinelibrary.com]
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the total number of epochs and T is the length of each epoch

in second), then set the binary EKG temporal feature f11 to 1,

otherwise to 0:

f1151; if #peaks>J

8. Current source density norm f12

Artefactual ICs are often described by sources with complicated

patterns and large overall power. The source activity s can be esti-

mated using the weighted minimum norm estimation approach

(Hämäläinen, & Ilmoniemi, 1994) on a boundary element head

model built from the average structural MRI of 40 subjects (Fischl,

Sereno, Tootell, & Dale, 1999). To compensate the bias toward

superficial sources, depth weighting that scales the source activity

by the L2 norm of the columns of the lead field matrix is per-

formed. The current source density norm feature f12 is then

defined as the L2 norm of s estimated from b:

f125logjjsjj25log
ffiffiffiffiffiffiffiffiffiffiffiffiX
i

s2i

r

9. Maximum magnitude f13

The maximum magnitude feature f12 is defined as the maximum

magnitude:
f135logmax

t
jYi;tj

10. Short-time magnitude f14~16

The log mean magnitudes of different time windows are computed

to capture the decay artifact and various TEP peaks. The time win-

dows considered in ARTIST are 0–60, 60–140, and 140–220 ms:

FIGURE 5 EKG temporal features and power spectrum features. (a) EKG temporal feature. Left: a persistent EMG IC. Right: an EKG IC.
For each IC, the third panel shows the magnitude (jyij) of the time course concatenated across epochs. Peak detection on jyij suffers from a
high number of false positives. The bottom panel shows the results of peak detection on the wavelet reconstructed signal (juij). The red
circles represent the detected peaks. For the EKG IC, the QRS complexes are accurately detected in the wavelet reconstruction, whereas
for the persistent EMG IC, no supra-threshold peaks are detected in the wavelet reconstruction. (b) Spectral features. Left panel: a neural
IC, with the alpha-band fit error of 1.66 and log(b)525.30. Right panel: a persistent EMG IC, with the alpha-band fit error of 20.36 and
log(b)58.53 [Color figure can be viewed at wileyonlinelibrary.com]
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f145logjmean jYi;tj
� �j; t 2 0 ms; 60 ms½ �

f155logjmean jYi;tj
� �j; t 2 60 ms; 140 ms½ �

f165logjmean jYi;tj
� �j; t 2 140 ms; 220 ms½ �

These are designed to capture TEP peaks that are typically present

when different brain areas are stimulated (Harquel et al., 2016;

Rosanova et al., 2009), such as n45, p60, n100, and p200 (see neu-

ral IC4 and IC5 in Figure 1 for examples). They can also be used to

capture the artifacts that are time-locked to the TMS (e.g., the

decay artifact). Computing the mean magnitudes for relatively

broad timeframes allows one to quantify the TEP peaks without

allowing for spurious fluctuations (which would occur if they have

a narrow temporal width) and capture peaks that are significantly

earlier or later than typical TMS peaks owing to intersubject or

intersite variability.

11. Skewness f17

Asymmetric probability distributions are more common in artifacts.

The skewness is a high-order statistics that measures the asymme-

try of the probability distribution of the spTMS-EEG data (Hair,

Black, Babin, & Anderson, 2009):

h5E
Y2l
r

� �3
" #

where l is the mean, r is the standard deviation, and E is the

expectation operator. We compute f17 as the log value of the

mean absolute skewness across epochs.

12. Band-power for EEG rhythms f18~21

To capture the various EEG rhythms, the log band-power is com-

puted for the theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz),

and gamma (31–50 Hz) bands. The gamma band-power is also use-

ful for detecting persistent EMG artifacts.

13. Spectral features f22~23

Typical EEG power spectra follow the 1/f shape, with the excep-

tion of the alpha band, where the alpha rhythm in the EEG data is

typically stronger than expected in a 1/f spectrum (Luck, 2014;

Figure 5b). We thus extract two spectral features after fitting the

following 1/f curve to the power spectrum of each IC, P (between

1 and 35 Hz but excluding the alpha band (8–12 Hz)), by using the

nonlinear least squares:

bP5 a
fb
1c b>0ð Þ

where bP is the fitted power spectrum. The first spectral feature f22

is the log mean squared fit error between the actual power spec-

trum of the IC and fitted 1/f spectrum within the alpha band,

which is useful for identifying neural signals:

f225log jjPa2bPajj2Þ
�

where Pa is the power spectrum within the alpha band, and bPa is

the fitted 1/f spectrum within the alpha band. The second spectral

feature f23 is log(b), which is useful for rejecting persistent EMG

artifacts, as they tend to have higher b than neural ICs (Figure 5b).

The resulting 23 features are aggregated to form a feature vector that

classifies each IC as neural or artefactual. The Fisher linear discriminant

analysis (FLDA) classifier (Bishop, 2006) was utilized due to its fast

speed, interpretability, and as it is not prone to overfitting (provided

the number of the features is comparable with the size of the training

set). The ICs labeled as artefactual are rejected by subtracting their

summed back-projections from the spTMS-EEG data. The artifact-

corrected data are then rereferenced to the common average and

baseline corrected (relative to the 2300 to 2100 ms baseline by

default) prior to the subsequent quantitative analyses.

An example of artifact rejection with ARTIST for an actual spTMS-

EEG data set is presented in Figure 6.

2.3 | spTMS-EEG data collection

2.3.1 | Subjects

To determine the robustness of ARTIST, we used spTMS-EEG data of

12 healthy control (HC) subjects collected from two separated studies

(6 HCs in study 1 and 6 HCs in study 2; 7 females, aged 30.1168.68

year-old) who gave their informed consent to participating in the stud-

ies. The studies were approved by the Institutional Review Board of

Stanford University and the Palo Alto VA.

2.3.2 | TMS

Following an anatomical MRI (T1-weghted, 3 T) to determine MRI-

guided spTMS targets, subjects received spTMS using a Cool-B B65

butterfly coil and a MagPro X100 TMS stimulator (MagVenture, Den-

mark). Stimulations were delivered to 15 cortical targets, including pri-

mary visual cortex (V1), bilateral primary motor cortices (M1), bilateral

posterior dorsal lateral prefrontal cortices (pDLPFC), bilateral anterior

dorsal lateral prefrontal cortices (aDLPFC), bilateral frontal eye fields

(FEF), bilateral inferior parietal lobules (IPL), bilateral intraparietal sulci

(IPS), and bilateral angular gyri (ANG). For V1 and M1, the target sites

were defined in the standard Montreal Neurological Institute reference.

For pDLPFC, aDLPFC, FEF, IPL, IPS, and ANG, the stimulation sites

were identified as the peak coordinates in clusters derived from brain

networks parcellated from a separate group of subjects’ resting-state

fMRI data (Chen et al., 2013; Sridharan, Levitin, & Menon, 2008) using

ICA. These targets were then transformed to individual subject native

space using non-linear spatial normalization with FSL (https://fsl.fmrib.

ox.ac.uk/fsl/fslwiki) and used for TMS targeting. The resting motor

threshold (rMT) was determined as the minimum stimulation intensity

that produced visible finger movement of the right hand at least 50%

of the times when the subject’s left M1 is stimulated. TMS coil place-

ment was guided by Visor2 LT 3D neuronavigation system (ANT

Neuro, Netherlands) based on co-registration of the functionally

defined target to each participant’s structural MRI (T1 weighted, slice

distance 1 mm, slice thickness 1 mm, sagittal orientation, acquisition

matrix 256 3 256) acquired with a 3T GE DISCOVERY MR750 scan-

ner. The TMS coil was placed tangentially to the scalp with the handle

pointing backwards and laterally at an angle of 458 to the sagittal plane

(with the exception of V1, where the handle was pointing downwards

along the sagitall plane. Studying the optimal coil angles for different
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stimulation sites is beyond the scope of this article). Each target site

was stimulated with 60 pulses (biphasic TMS pulses, 280 ms pulse

width, 120% rMT, 1500 ms recharge delay), interleaved at a random

interval of 3 s6300 ms. A thin foam pad was attached to the surface

of the TMS coil to decrease electrode movement. The subjects were

instructed to relax and to fixate at a cross located on the opposing wall

while stimulations were administered by a research assistant.

2.3.3 | EEG

A total of 64-channel EEG data were recorded using two 32-channel

TMS-compatible BrainAmp DC amplifiers (sampling rate: 5 kHz; mea-

surement range:616.384 mv; cutoff frequencies of the analog high-

pass and low-pass filters: 0 and 1 kHz) and the Easy EEG cap with extra

flat, freely rotatable, sintered Ag-AgCl electrodes designed specifically

for TMS applications (BrainProducts GmbH, Germany). The electrode

montage followed an equidistant arrangement extending from below

the cheekbone back to below the inion (Figure 4a). Electrode impedan-

ces were kept below 5 kX. An electrode attached to the tip of the nose

was used as the reference. DC correction was manually triggered at

the end of the stimulations at each site to prevent the saturation of the

amplifier due to the DC drift. During the spTMS-EEG recordings, sub-

jects were seated on a comfortable reclining chair.

All EEG data analyses were performed in MATLAB (R2014b, The

Mathworks Inc., MA) using custom scripts built upon the EEGLAB

(Delorme, & Makeig, 2004) toolboxes. In ARTIST, following frequency

filtering, the EEG data were epoched 2500 to 11000 ms relative to

the TMS pulse. For the first ICA run, as the primary goal is to remove

large amplitude decay artifacts, no dimensionality reduction was per-

formed, (i.e., the number of ICs is equal to the rank of the EEG data

matrix). For the second ICA run, dimensionality reduction was per-

formed beforehand via PCA. The dimensionality is determined to be

the least number of principal components that can explain higher than

FIGURE 6 An illustrative example of the ARTIST algorithm. This particular spTMS-EEG data set was acquired during stimulations at the right
posterior DLPFC (see Sections 2.3.2 and 2.3.3 for more details on the recording protocol). Time (in ms) of each scalp map is displayed above. In

the first stage, the TMS pulse artifact is removed by cutting off the 10 ms post-TMS data and replaced by the cubic interpolation. The data is
then downsampled to 1 kHz. The decay artifact is removed by automatically rejecting the decay IC during the first ICA run. In the second stage,
the data are notched filtered at 60 Hz and bandpass filtered within 1 and 100 Hz. The data are then epoched relative to the TMS pulses. Epochs
with z-scores of the power above 3, and channels with maximum correlation coefficients with their neighbors lower than 0.5, are rejected. In
the third stage, the remaining artifacts are removed by automatically rejecting their corresponding ICs during the second ICA run [Color figure
can be viewed at wileyonlinelibrary.com]

1616 | WU ET AL.

http://wileyonlinelibrary.com


99.9% of the total variance. The decay artifact ICs of the first ICA run

and all the ICs of the second ICA run were considered in the following

classification assessment. Note that ICs of the second ICA run with

negligible variance (<0.2% of the total variance) would not affect

reconstruction and were therefore always discarded. After artifact

rejection, baseline correction was performed 2300 to 2100 ms rela-

tive to the TMS pulse.

Manual IC classification was developed from both the population

#1 HC data (N56 subjects, n52198 ICs) and the population #2 HC

data (N56 subjects, n52212 ICs). Three EEG experts with extensive

experience in spTMS-EEG manual artifact rejection manually classified

each IC to either “nonartifact” or “artifact.” The final label of each IC

was determined by consensus, i.e., the category that received the most

number of the EEG experts’ votes. In order to avoid losing significant

neural information, the experts were instructed to keep ICs that appear

partly artefactual and partly neural. To determine if ARTIST helps

reduce bias from human influence, manual ratings were also performed

by two novice EEG users who had received one training session of two

hours on TMS-EEG artifact rejection and practiced on spTMS-EEG

data sets of only two stimulation sites from a single subject.

2.4 | Quantification of IC classification accuracy and

postprocessing performance

Using the spTMS-EEG data described above, we benchmarked ARTIST

against MARA (Winkler et al., 2011), which is a state-of-the-art super-

vised IC rejection algorithm developed for cleaning standard EEG data,

to determine IC classification accuracy, with manual artifact rejection

results by the EEG experts as the gold-standard. In accordance with

(Winkler et al., 2011), the following six features are used in MARA:

skewness, log(b), alpha band power, fit error, dynamical range, and cur-

rent source density. In order to assess their generalization capability

across stimulation sites, subjects, and populations, ARTIST and MARA’s

artifact rejection performance was evaluated using two metrics: (a) IC

classification accuracy and (b) correlation coefficient between the group

TEPs of auto- and hand-cleaned data.

More specifically, IC classification accuracies were first computed

on the population #1 data using split-half accuracy, intersubject accuracy,

and intersite accuracy. To compute split-half accuracy, ICs were random-

ized and the FLDA classifier was subsequently trained on half of the

randomized ICs and tested on the remaining half. This process was

repeated for 20 iterations and averaged to obtain the split-half accuracy

(Kohavi, 1995). The leave-one-out strategy was employed to calculate

the intersubject/site accuracy. More specifically, in each iteration the

FLDA was trained on the ICs of a different set of N 2 1 subjects/sites

and tested on the ICs of the remaining subject/site. The intersubject/

site accuracy is the average of the classification accuracy across N itera-

tions (N56 for intersubject accuracy and N515 for intersite accuracy).

The classification accuracy measures the performance of ARTIST in

IC classification. However, three questions remain unaddressed: (a)

How does the algorithm generalize across populations? A fully auto-

mated method should perform well when tested on data from a differ-

ent population that was not used to train the method. (b) How does

the algorithm generalize across electrode montages? The classifier

trained from the data using one electrode montage should be applica-

ble to the data using a different electrode montage, such that recalibra-

tion is not needed. (c) How do the TEPs from the auto-cleaned data

compare to the TEPs of the hand-cleaned data? To address the first

question, we demonstrated the quality of the automated artifact rejec-

tion by testing the classifier trained from the population #1 HC

spTMS-EEG data (N56) on the population #2 HCs (N56). To address

the second question, we tested the classifier trained from the popula-

tion #1 HC spTMS-EEG data using the full set of 64 electrodes on the

population #2 HC data with a subset of 34 electrodes (Figure 4b). For

the third question, in addition to calculating the IC classification accu-

racy, we calculated the within-subject correlation coefficient between

the TEPs and time–frequency power maps of the hand-cleaned and

autocleaned data. The time-frequency power maps were calculated

using the Morlet wavelet transform with a three cycle time window.

3 | RESULTS

3.1 | Manual classification results

Among all the population #1 HCs’ ICs, manual processing by the three

EEG experts concluded that 1257 ICs (57.19%) were artefactual and

941 (42.81%) were neural in origin. For population #2, 1285 ICs

(58.09%) were artefactual and 927 (41.91%) were neural. The percent-

age of inter-rater agreement (i.e., the three experts rated identically) is

93.92%, indicating consistency among experts.

Compared to the gold-standard IC classification by the EEG

experts, classification accuracies by the two EEG novice users were

89.68% and 83.38%, respectively. The sensitivity and specificity were

87.89% and 91.88% for novice user 1, and 98.69% and 64.63% for

novice user 2, respectively. The low consistency of the sensitivity and

specificity between the novice users highlights the potential for consid-

erable between-rater variability in IC classification.

3.2 | Intrapopulation IC classification results

Compared to IC classification by the EEG experts, intersubject accuracies

across the 6 population #1 HCs were 95.9361.74% (mean6SD) for

ARTIST, and 92.5764.31% for MARA, significantly higher for ARTIST

(p< .05; Wilcoxon signed rank test). The classification accuracies for

each subject are listed in Table 1. Intersite accuracy across the 15 sites

was calculated to be 95.8862.41% for ARTIST and 93.1462.33% for

MARA, significantly higher for ARTIST (Figure 7b; n515 sites; p<1024;

Wilcoxon signed rank test). The classification accuracies for each site are

listed in Table 2. The split-half accuracy over 20 iterations was 96.206

0.33% for ARTIST, and 92.0360.58% for MARA, significantly higher for

TABLE 1 Classification accuracies (%) for each subject in the leave-
one-subject-out classification

Methods Sub A Sub B Sub C Sub D Sub E Sub F Mean6 std

ARTIST 94.89 94.80 94.48 95.12 98.38 97.93 95.936 1.74

MARA 90.42 93.32 94.00 85.12 95.14 97.42 92.576 4.31
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ARTIST (Figure 7a; p<1024; Wilcoxon signed rank test). Moreover, for

ARTIST, the sensitivity and specificity of the artifact IC detection were

96.8360.97% and 95.7060.99%, respectively.

Further breakdown of the split-half classification accuracy by arti-

fact/neural types demonstrated that ARTIST outperformed MARA for

each type by 5.77% on average (Figure 7c). The improvement was par-

ticularly noteworthy for the EKG and TEP ICs, for which the accuracies

were increased by 19.51% and 7.08%, respectively (all p<1024; Wil-

coxon signed rank test).

To assess feature discriminability, we computed the split-half accu-

racy and the weighting of each feature (Figure 8a,b). More specifically,

each feature was employed to train the FLDA and the classification

accuracy was registered. The average classification accuracy over 20

iterations is shown in Figure 8a. The weights of the features shown in

Figure 8b are the average weights of each feature over 20 iterations of

the split-half classification using all features. Individually, the dynamical

range, b, and fit error features were the most discriminative among all

the features. However, high discriminability did not necessarily lead to

the high weighting of a feature in the classifier, as many highly discrimi-

native features demonstrated weaker classifier weighting (e.g., the fit

error feature f22; Figure 8a,b).

3.3 | Interpopulation IC classification and

postprocessing results

Next, following both manual and automated ICA rejection methods,

and using the classifiers trained from the population #1 HCs (N56),

we classified the ICs of the population #2 HCs (N56) not used in

building the classifier. We also compared the TEP and time–frequency

power maps between IC rejection methods.

The interpopulation classification accuracies across the 6 popula-

tion #2 HCs were 95.1062.15% for ARTIST and 91.3762.04% for

MARA, significantly higher for ARTIST (p<0.05; Wilcoxon signed rank

test). ARTIST also outperformed both novice users, whose classification

accuracies were 88.3062.70% and 81.9662.77% (p<0.05 for both

novice user 1 and 2; Wilcoxon signed rank test).

For the postprocessing results, the absolute differences between

automated and manual rejection for left pDLPFC and M1 stimulation

were computed. Figures 9 and 10 demonstrate the TEP (Figure 9) and

time–frequency power map (Figure 10) plots (also see Supporting Infor-

mation, Figure 1S for the comparison of TEP waveforms). In addition to

showing differences at electrodes F3 and C3, which are in close prox-

imity to left DLPFC and M1, respectively, we also showed the global

mean-field power (GMFP) for the TEP, which is a measure that charac-

terizes global EEG activity and is defined as the standard deviation of

the TEPs across channels (Lehmann, Skrandies, 1980). For the TEP, the

Wilcoxon signed rank test indicated that the absolute differences

between ARTIST and manual rejection are significantly smaller than

those between MARA and manual rejection at all electrodes (all

p<1026, Bonferroni corrected for the number of the stimulation sites

and electrodes). For the time–frequency power map, the average abso-

lute differences between automated and manual rejection were

assessed separately for each of the following EEG frequency bands: a

(8–12 Hz), b (13–30 Hz), and g (31–50 Hz). Across all the frequency

bands, the Wilcoxon signed rank test indicated that the absolute differ-

ences of the time–frequency power between ARTIST and manual

rejection are significantly smaller than those between MARA and man-

ual rejection at all electrodes (all p<1026, Bonferroni corrected for the

number of the stimulation sites, electrodes, and frequency bands).

For ARTIST, the within-subject correlation coefficient of the TEP

time series (averaged over channels) with those from the manual rejec-

tion was significantly higher than for MARA (p<0.005; paired Wil-

coxon signed rank test). Moreover, the within-subject correlation

coefficient of the spectral power time series (averaged over channels)

with those from the manual rejection was significantly higher than for

FIGURE 7 Classification accuracies of ARTIST compared with
MARA. (a) Split-half classification accuracy. (b) Intersite classifica-
tion accuracy. (c) Split-half classification accuracy for various types
of EEG artifacts for ARTIST and MARA [Color figure can be viewed
at wileyonlinelibrary.com]

TABLE 2 Classification accuracies (%) for each site in the leave-one-site-out classification

Methods Left M1 Right M1 V1 Left pDLPFC Right pDLPFC Left aDLPFC Right aDLPFC Left FEF Right FEF

ARTIST 95.88 90.12 98.77 92.90 95.60 97.18 98.58 97.56 95.80

MARA 94.71 88.89 94.48 90.16 93.71 95.48 95.74 93.29 94.41

Methods Left IPL Right IPL Left IPS Right IPS Left ANG Right ANG Mean6 std

ARTIST 97.10 92.52 96.27 96.32 95.24 98.28 95.886 2.41

MARA 95.65 90.65 91.79 89.71 95.24 93.10 93.146 2.33
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MARA in each frequency band (all p<0.01; paired Wilcoxon signed

rank test, Bonferroni corrected for number of the frequency bands). The

within-subject correlation coefficient between the log of the GMFP time

series from the manual rejection and ARTIST was <0.95 for each site

tested (Figure 11a), significantly higher than that between the manual

rejection and MARA (p<1024; paired Wilcoxon signed rank test).

Finally, for each subject, based on the GMFP time series, the peak mag-

nitude of each TEP component (P45, N100, and P200) was extracted.

Each TEP component demonstrated strong GMFP correlation between

manual rejection and ARTIST (Figure 11b; RP2005 .989, RN1005 .980,

RP455 .964.), and weaker correlation between manual rejection and

MARA (Figure 10b; RP2005 .960, RN1005 .944, RP455 .879; all p< .01;

paired Wilcoxon signed rank test, Bonferroni corrected for the number

of the TEP components). The significant performance enhancement in

ARTIST compared to MARA for the P45 component may be explained

by the fact that the early potentials are more susceptible to the interfer-

ence from the TMS-evoked muscle artifact.

To demonstrate the generalization across electrode montages,

ARTIST classifiers trained from the population #1 HCs (N56) using

the full set of 64 electrodes were used to classify the ICs extracted

from the population #2 HCs (N56) using a subset of 34 electrodes

(Figure 4b). The three EEG experts again manually rated all the ICs

associated with the 34 electrodes for the population #2 HCs (N56).

The interpopulation classification accuracies across the 6 population #2

HCs were 95.5661.81%.

4 | DISCUSSION

In summary, this article presented a fully automated algorithm ARTIST

for TMS-EEG artifact rejection based on a set of novel features that

captured the spatio-temporal-spectral profiles of neural and non-neural

sources. ARTIST achieved an IC classification of 95% across a large

number of spTMS-EEG data sets (n590 stimulation sites) when com-

pared to manual artifact rejection by EEG experts. This accuracy was

retained across stimulation sites, subjects, populations, and electrode

montages, demonstrating high generalization performance. Moreover,

ARTIST significantly outperformed a state-of-the-art automated algo-

rithm, MARA, by an average of more than 5% across artifact/nonarti-

fact types, and artifact rejection by relatively novice individuals. Finally,

reliable postprocessing results were obtained using the ARTIST-

cleaned data, as shown by the strong within-subject correlations

attained for the GMFP and TEP time series between hand-cleaned and

ARTIST-cleaned data.

4.1 | Potential applications and advances

To our knowledge, this work describes the first fully automated arti-

fact rejection algorithm for the analysis of spTMS-EEG data. Using

MATLAB R2014b on a desktop with 3 GHz Intel Core i7 CPU and 16

GB RAM, the average runtime of ARTIST on the spTMS-EEG data of

one stimulation site (60 trials; interstimulus interval of 3 s6300 ms)

is 1.2 min, compared to the average time of 7 min by the EEG

experts using the semi-automated pipeline that manually classifies

the ICs. Therefore, this algorithm will greatly improve the precision

and processing time of TMS-EEG experiments, allowing the analysis

of the large-scale TMS-EEG connectome data sets to be completed

within a short period of time (Harquel et al., 2016). This also opens

up the potential for near real-time processing of data, which could

lead to probing of ongoing brain states as well as closed-loop applica-

tions. Furthermore, the high level of IC classification accuracy

observed in both populations demonstrates the generalizability of

FIGURE 8 Feature assessment of ARTIST. (a) Feature-wise classification accuracy. (b) Classifier weight associated with each feature when
all the features are used in conjunction. The features from top to bottom are as follows: f1, dynamical range; f2, central activation; f3, frontal
activation; f4, occipital activation; f5, left temporal activation; f6, right temporal activation; f7, border activation; f8, horizontal eye movement;
f9, blink/vertical eye movement; f10, EKG spatial feature; f11, EKG temporal feature; f12, current source density; f13, maximum magnitude;
f14, 0–60 ms short-time magnitude; f15, 60–140 ms short-time magnitude; f16, 140–220 ms short time magnitude; f17, skewness; f18, theta-

band power; f19, alpha-band power; f20, beta-band power; f21, gamma-band power; f22, fit error; f23, log(b) [Color figure can be viewed at
wileyonlinelibrary.com]
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the ARTIST algorithm across populations. Moreover, as TMS-EEG

methods are more broadly disseminated and used by the neuro-

science community, likely users will increasingly be relatively novice

individuals in terms of manual artifact rejection skills. The clear supe-

riority of the performance of ARTIST when compared to our novice

raters (who were themselves inconsistent with each other) demon-

strates the capacity of this algorithm to standardize the objective

and high-quality rejection of TMS-EEG artifacts and support auto-

mated processing. The MATLAB code for ARTIST is available at

http://etkinlab.stanford.edu/toolboxes/ARTIST/.

4.2 | Considerations, limitations, and future directions

The EKG artifact has received little attention in traditional automated

EEG artifact rejection approaches. In ARTIST, the EKG spatial feature

and temporal feature were proposed for detecting the EKG IC. The

EKG spatial feature is robust to the variability of the EKG topography

across subjects, and the EKG temporal feature detects the QRS com-

plexes in wavelet subspace, which is less prone to false positives than

peak detection in the original subspace (Figure 5a). Together, these

two features enable a high classification rate for the EKG IC (98.68%;

Figure 7c).

As suggested in Figure 8, high discriminability of a feature did

not necessarily yield high classifier weighting of the feature. The rea-

sons are threefold: (a) Redundancy among the features. This is

because a certain artifact or non-artifact type can be captured by

multiple features. For instance, the low weighting of the fit error

feature may be because it only offers redundant information as com-

pared with the b and alpha band power features. (b) A feature may

not be discriminative when used alone but contributes to the

FIGURE 9 Absolute difference of TMS-evoked potentials (TEPs) between manual and automated rejection algorithms. Data derived from
population #2 subjects (N56). The stimulation sites are the (a) left pDLPFC and (b) left M1 [Color figure can be viewed at wileyonlineli-
brary.com]
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classification substantially when combined with other features (e.g.,

the EKG spatial feature). (c) Imbalances of the sample size in each

artifact subtype. For instance, the classification accuracy of the EKG

spatial feature is low partly because of the relatively small number

of EKG ICs. Note that the EKG spatial feature f10 is a binary feature,

with 0 indicating the absence of the EKG artifact. We have found

(data not presented) that using f10 alone can achieve high classifica-

tion accuracy (>98.7%) for the EKG artifact (by treating EKG vs

other artifacts/neural signals as a binary classification problem).

Therefore, the large weight of f10 reflects the discriminativeness of

the feature toward classifying the EKG artifact. For the non-EKG

artifacts or neural signals, as the associated f10 is 0 in most cases,

the large weight of the EKG spatial feature in Figure 8b would not

affect their classification.

Our results also reveal that ICs do not weigh equally in their

importance for post-processing (Figure 8b). Some misclassified arte-

factual ICs may slightly influence postprocessing if they only explain

a small amount of variance in the data. By contrast, neural ICs such

as the TEP ICs that carry important information, if erroneously clas-

sified, may change the postprocessing results dramatically as the

corresponding TEP peaks will be missing or considerably distorted.

In ARTIST, the detection rate for the TEP ICs is higher than MARA

because the short-time magnitude features are designed for the TEP

ICs in ARTIST.

It may be argued that artifacts not time-locked or phase-locked

to the TMS pulse do not heavily affect postprocessing as they are

cancelled out through epoch averaging when the TEP is calculated.

However, when one is interested in the spectral content of the

TMS-EEG data, the spectral power of the artifacts is not sup-

pressed by epoch averaging. Hence, it is important that major arti-

facts are removed prior to spectral analyses of the data. The

performance of the ICA-based artifact rejection depends crucially

on ICA’s ability to separate artifacts and neural sources into dis-

tinct components, which can be distorted by a number of factors.

First, it has been shown that large (e.g., thousands of microvolts)

TMS-evoked muscle artifacts could lead to substantial error in the

estimation of the IC spatial maps, and several methods were pro-

posed to suppress the muscle artifacts prior to the ICA (Hernan-

dez-Pavon et al., 2012; Korhonen et al., 2011; Casula et al., 2017).

These methods can be combined with ARTIST to further improve

FIGURE 10 Absolute difference of time–frequency power maps between manual and automated rejection algorithms. Data derived from
population #2 subjects (N56). The stimulation sites are the (a) left pDLPFC and (b) left M1. The time–frequency power maps are calculated
using the Morlet wavelet transform with a three cycle time window and z-scored with respect to the 2300 to 2100 ms baseline [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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its performance. Second, to ensure reliability of the IC estimation,

it is important to feed sufficient amount of EEG data into the ICA.

As a rule of thumb, the minimum number of data samples required

for a reliable ICA is kCN, where C is the number of the ICs, N is the

number of the channels, and k is a constant depending on the num-

ber of ICs. To decompose a large number of channels, k may need

to be at least 20 (Onton, Westerfield, Townsend, & Makeig, 2006).

Thus, when N is large, dimensionality reduction approaches should

be used to reduce C. In the data analysis presented in this article,

we used PCA to reduce the number of ICs in the ICA. The number

of ICs can be determined in a more principled manner under more

formal statistical frameworks (Beckmann, & Smith, 2004; Wu,

Nagarajan, & Chen, 2016). Third, in some cases ICA may produce

ICs with strong presence of both neural signals and artifacts that

could be classified either way. In the manual rating stage these ICs

were classified as neural to prevent the loss of important neuro-

physiological information. When used for training, ARTIST is able

to learn to similarly classify the ambiguous ICs as neural. Fourth,

electrode interpolation prior to ICA may introduce nonlinearity into

the EEG data, which may lower the performance of ICA. However,

we still chose to interpolate the rejected channels to keep the

montage consistent across the stimulation sites, subjects, and pop-

ulations, so that the ICs can be analyzed in a standardized manner

(Section 2.2.3). This is also in line with the approach in (Nolan et al.,

2010). The influence of electrode interpolation on the performance

of ICA is likely small when the number of the rejected channels is

low. Assessing the impact of the electrode interpolation on ICA is

beyond the scope of this article.

The workflow of ARTIST is similar to the one described in TESA

(Rogasch et al., 2016) and TMSEEG (Atluri et al., 2016), but unlike

those other packages, here the IC rejection is fully automated. In

particular, a semi-automated algorithm for IC selection was provided in

TESA, in which the ICs were classified based on heuristically defined

thresholds, as opposed to the thresholds determined in a data-driven

manner as in ARTIST, and the IC classification accuracy was not

reported. Moreover, in TESA and TMEEG, the EKG artifact was not

considered and the influence of the artifact rejection to the TEPs was

not assessed.

Artifact rejection is by no means a substitute for stringent data

acquisition protocols. There is no preprocessing trick that will turn

low-quality data into high-quality results. A set of standard TMS-

EEG acquisition guidelines was provided in (Ilmoniemi & Kičić,

2010; Rosanova et al., 2012) to ensure high-quality spTMS-EEG

recordings. These include the use of noise-cancellation earphones

with masking white noise to suppress the air-conducted auditory

artifacts due to TMS-clicks, a thin layer of foam between the coil

and EEG cap to reduce the electrode movement and bone-

conducted auditory artifacts, low electrode impedances to shorten

the duration of the pulse artifact and minimize electrode polariza-

tion artifact, and a high EEG sampling rate to minimize the ringing

artifact from the TMS pulse. One limitation of this study is that the

masking white noise was not used during the acquisition of the

spTMS-EEG data and the resulting auditory-evoked potential arti-

facts were not considered in ARTIST (Rogasch et al., 2014). Soma-

tosensory evoked potentials (SEPs) can also be elicited by TMS via

scalp sensations, or peripheral somatosensory feedback from the

contracting muscles when the motor cortex is stimulated. It is very

difficult to identify the degree of contribution of the SEP to

spTMS-EEG. Despite that ARTIST does not attempt to remove the

SEP, several previous studies have used sham stimulations to show

that the SEP does not pose a major problem (Nikulin, Kičić,

Kähk€onen, & Ilmoniemi, 2003).

FIGURE 11 Correlations between GMFP from the manual and automated rejection algorithms in population #2 subjects (N56). (a)
Within-subject correlation coefficient for each stimulation site. Each vertical bar represents within-subject correlation coefficient when each
site is stimulated. (b) Scatter plots. From left to right: quantification of GMFPs at p200, n100, and p45 time components. Each circle repre-
sents the GMFPs computed from manual rejection (x-coordinate) versus automated rejection (y-coordinate), corresponding to one site and
subject [Color figure can be viewed at wileyonlinelibrary.com]
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We highlight several lines of future work related to ARTIST.

First, the focus of this paper is artifact rejection for the spTMS-

EEG data, but it also serves as the cornerstone to develop auto-

mated artifact rejection algorithms for other types of TMS-EEG

data under similar frameworks, including the concurrent repetitive

TMS-EEG data (Hamidi, Slagter, Tononi, & Postle, 2010) and

paired-pulse TMS-EEG data (Casula, Pellicciari, Picazio, Caltagir-

one, & Koch, 2016). The key is to define features that are tailored

to the specific time scales of different data types. Second,

although we assessed the intersite/subject/population classifica-

tion performance of ARTIST, it remains to be verified if the algo-

rithm generalizes well across spTMS-EEG data sets collected in

different labs, where the specific experimental protocols, environ-

ment, and EEG amplifiers may vary. Third, although the Infomax

algorithm was chosen to solve the ICA in ARTIST, other ICA algo-

rithms can also be considered, including FastICA (Hyvarinen,

1999) and TDSEP (Ziehe, & M€uller, 1998), which is a computation-

ally efficient algorithm purely based on second-order statistics.

Future work will compare various ICA algorithms and assess how

they influence spTMS-EEG artifact rejection differently. Finally,

TMS-evoked eye blinks that are temporally overlapping with the

TEPs may violate the statistical independence assumption of the

ICA. To address this issue, new approaches that use different cri-

teria for removing the decay artifacts and TMS-evoked eye blink

artifacts should be developed.
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