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Objective:Despite significant advances in neuroscience and
treatment development, no widely accepted biomarkers are
available to inform diagnostics or identify preferred treat-
ments for individuals with major depressive disorder.

Method: In this critical review, the authors examine the
extent to which multimodal neuroimaging techniques can
identify biomarkers reflecting key pathophysiologic pro-
cesses in depression and whether such biomarkers may act
as predictors, moderators, and mediators of treatment re-
sponse that might facilitate development of personalized
treatments based on a better understanding of these
processes.

Results:Theauthorsfirsthighlight themostconsistentfindings
from neuroimaging studies using different techniques in de-
pression, including structural and functional abnormalities in
two parallel neural circuits: serotonergically modulated im-
plicit emotion regulation circuitry, centered on the amygdala

and different regions in the medial prefrontal cortex; and
dopaminergicallymodulated reward neural circuitry, centered
on the ventral striatumandmedial prefrontal cortex. They then
describe keyfindings fromthe relatively small numberof studies
indicating that specificmeasures of regional function and, to a
lesser extent, structure in these neural circuits predict treat-
ment response in depression.

Conclusions: Limitations of existing studies include small
sample sizes, use of only one neuroimaging modality, and a
focus on identifying predictors rather than moderators and
mediators of differential treatment response. By addressing
these limitations and, most importantly, capitalizing on the
benefitsofmultimodal neuroimaging, future studies canyield
moderators and mediators of treatment response in de-
pression to facilitate significant improvements in shorter-and
longer-term clinical and functional outcomes.
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Major depressive disorder has a lifetime prevalence of 16.2%,
causes greater total morbidity, loss of productivity, and sui-
cide than any other noncommunicable disorder, and con-
tributes significantly to decreased quality of life (1, 2). Despite
significant advances inneuroscience, treatmentdevelopment
has lagged, primarily because of a lack of applicable clinical
neuroimaging or other biomarkers: no widely accepted bio-
markers are available to assist diagnostics or treatment choice
for individual patients. The timely selection of the optimal
treatment for patients with depression is critical to improving
remission rates. Owing to the biological heterogeneity and
variable symptompresentationofdepression, it isunlikely that
a single clinical or biological marker can guide treatment se-
lection. Rather, multiple biological measures may be needed
to refine our understanding of the underlying pathology and
providemorereliablemarkerstoguidetreatment.Unfortunately,
predictor research has been limited by the use of a single clinical
or biologicalmarker and as a result has explained a small degree
of variance.

As has been highlighted previously (3), neuroimaging tech-
nologies have the potential to identify objective neurobiological

markers reflecting underlying pathophysiologic processes in
a given psychiatric illness, which can ultimately facilitate the
development of personalized treatments based on a better
understandingof theseunderlyingprocesses.Moreover,with
the advancement of different types of neuroimaging tech-
nologiesanddata analytic techniques, therearenowenormous
opportunities to adopt multimodal neuroimaging approaches
to examine the functional and structural integrity of parallel
distributedneural circuits implicated ina given illness. In turn,
this approach can both help identify multiple biomarkers re-
flecting underlying pathophysiologic processes in illnesses
such as depression, and help in determining the extent to
which such biomarkers can serve as predictors of treatment
response in the illness. Typically, however, studies in depressed
individuals have focusedonexaminationof oneneural circuit of
interest and have not employed multimodal neuroimaging
techniques to refine our understanding and thereby provide
more reliable biomarkers of functional and structural ab-
normalities inparallel neural circuits of interest. Furthermore,
a relatively small number of studies have used neuroimaging to
help identifybiomarkerpredictorsofantidepressantresponse in
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depression, and, as noted, they have focused primarily on one
neural circuit. Moreover, no study to date has focused on
identifying neuroimaging moderators, pretreatment vari-
ables that predict differential treatment response, or neu-
roimaging temporal mediators, variables whose change early
during treatment is associated with future treatment out-
come, in depression. Identification of the former can improve
treatment selection for depressed individuals. Identification
of the latter can help stop ineffective treatment early, in ad-
dition to facilitating our understanding of early, even if not
longer-term, causal neural mechanisms of treatment response
in these individuals (4). Elucidating neuroimagingmoderators
andmediators can thus provide not only valuable insights into
neural mechanisms of illness but also valuable clinical infor-
mation to help guide the choice of treatment for these indi-
viduals early on.

In this review, we first examine the extent to which
multimodal neuroimaging techniques can be used to identify
biomarkers reflecting key underlying pathophysiologic pro-
cesses in depression. We describe two parallel neural circuits,
namely, implicit emotion regulation and reward neural circuits,
that are relevant to understanding pathophysiologic processes
underlying core symptom dimensions in depression. We ex-
amine the extent towhich these neural circuits aremodulated
by different neurotransmitter systems, and the nature of func-
tional, gray and white matter structural, and resting-state func-
tional connectivity, as well as blood flow abnormalities, in these
neural circuits in depressed individuals. We then examine the
extent towhich biomarkers reflecting functional and structural
abnormalities inthesecircuitsmayhaveutilityaspredictorsand,
more importantly, as moderators and mediators of treatment
response to specific antidepressant treatments. We end by
discussing future directions for neuroimaging studies of treat-
ment response prediction in depression.

NEURAL CIRCUITS IMPLICATED IN THE
PATHOPHYSIOLOGY OF DEPRESSION

Core depressive symptom dimensions, including persistent
lowmood, anxiety, andanhedonia, reflect predominant features
of dysfunctional emotion regulation and reward processing.
While abnormalities in multiple distributed neural circuits
underlying different levels of effortful and implicit emotion
regulation and reward processing are probably implicated in
the pathophysiology of depression and other affective disor-
ders (3, 5), themost consistentfindings involve twopatterns of
distinct functional abnormalities: those in 1) serotonergically
modulated implicit emotion regulationneural circuitry centered
on the amygdala anddifferentmedial prefrontal cortical regions,
and 2) dopaminergically modulated reward neural circuitry
centered on the ventral striatum and medial prefrontal cortex
(6–9) (Figure 1). Abnormalities in these parallel neural circuits
may be associated with different symptom dimensions and
therefore guide appropriate treatment selection. For example,
abnormalities in implicit emotion regulation circuitry may
be associated with persistent low mood and anxiety, while

abnormalities in reward neural circuitry may result in ap-
athy and anhedonia (10, 11). Examining relationships be-
tween abnormalities in these neural circuits and different
symptomdimensions in depressed individuals also parallels
the dimensional approach of Research Domain Criteria
advocated by the National Institute of Mental Health (12)
and can ultimately identify critical brain-behavior relation-
ships that may transcend conventional diagnostic categories
of psychiatric illness. For example, abnormalities in implicit
emotion regulation circuitrymay be associatedwith behaviors
linked to constructs in the negative valence systems domain,
such as acute and sustained threat, fear, and anxiety. On the
other hand, abnormalities in reward circuitry may be associ-
atedwith behaviors linked to constructs in thepositive valence
systemsdomain, such as rewardexpectancyandanhedonia. In
the following sections,we describe inmoredetail the natureof
these distributed neural circuits, their modulation by specific
neurotransmitter systems, and the abnormalities in these
circuits that are reported in depressed individuals.

NEURAL CIRCUITS UNDERLYING IMPLICIT
EMOTION REGULATION AND REWARD
PROCESSING, AND THEIR MODULATION BY
SPECIFIC NEUROTRANSMITTER SYSTEMS

Implicit Emotion Regulation Circuitry
A large body of animal and human neuroimaging studies
highlights the role of the amygdala and different medial
prefrontal cortical regions in implicit emotion regulation,
including the subgenual anterior cingulate cortex, the ven-
tromedial prefrontal cortex, the rostral/pregenual anterior
cingulate cortex, the dorsal anterior cingulate cortex, and the
mediodorsal prefrontal cortex, in addition to the hippocampus.
Distinct roles of these regions have been reported in different
implicit emotion regulation subprocesses, including automatic
behavioral control, automatic attentional control, and automatic
cognitive change (13). Specifically, the subgenual anterior cin-
gulate and ventromedial prefrontal cortices are implicated in
automaticbehavioralcontrol (e.g., fearextinction),whichmaybe
associatedwith the roles of these regions in encoding emotional
salience; the rostral/pregenual anterior cingulate cortex is a key
region involved in automatic attentional control; and the dorsal
anterior cingulate and mediodorsal prefrontal cortices and the
hippocampus, in addition to the ventromedial prefrontal cortex,
may be more involved in automatic cognitive change processes
(e.g., error monitoring and behavioral rule learning paradigms
occurring without subjective awareness) (13).

Growing evidence suggests that serotonin modulates ac-
tivity in implicit emotion regulation neural circuitry, par-
ticularly the amygdala andmedial prefrontal cortical regions
(14). For example, multiple neuroimaging studies have found
differences in activity and functional connectivity in this
circuitry across genetic variants in the promoter region of the
gene for the serotonin transporter (5-HTTLPR) (15–19). This
circuitry has been modulated by serotonergic challenge with
serotonin reuptake inhibitors (SRIs) (20–26), even with the
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FIGURE 1. Functional Abnormalities in Parallel Neural Circuits in Depressiona
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Reduced amygdala-rostral ACC/dorsal ACC/mPFC 
functional (and effective) connectivity to emotional stimuli; 
normalizes/increases with antidepressant treatment

Reduced amygdala-subgenual ACC/vmPFC
functional (and effective) connectivity to emotional stimuli

Elevated subgenual ACC activity to emotional stimuli; 
normalizes/reduces with antidepressant treatment

Elevated amygdala activity to emotional stimuli; 
normalizes/reduces with antidepressant treatment

Reduced ventral striatal  activity to reward/reward 
learning; greater habituation of ventral striatal response 
to reward

Elevated mPFC/pregenual ACC activity  to formerly 
rewarding stimuli during expectancy of monetary reward 
and during reward learning (reduced activity to reward)

A. Functional Abnormalities in Implicit Emotion Regulation Neural Circuitry

B. Functional Abnormalities in Reward Neural Circuitry

a ACC5anterior cingulate cortex; mPFC5medial prefrontal cortex; vmPFC5ventromedial prefrontal cortex. In panel A, the star-shaped
nodes represent regions in whichmore consistent patterns of abnormally elevated activity are reported in depression. The blue arrows
represent functional (and effective) connectivity among the key neural regions in this circuitry. In panel B, the star-shaped nodes
represent regions in which more consistent patterns of abnormally elevated or decreased activity are reported in depression.
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combined serotonin and norepinephrine reuptake inhibitor
(SNRI) duloxetine (27); by serotonergic depletionwith acute
tryptophan depletion (21, 28, 29); and by the tricyclic antide-
pressant clomipramine, affecting serotonin andnorepinephrine
reuptake (30). Overall, these findings indicate that increasing
serotonin level is associated with reduced activity in this cir-
cuitry, particularly in the amygdala, to threat-related stimuli
(although see references 31, 32), while decreasing serotonin
level is associated with increased functioning within this
circuitry (33, 34). Furthermore, there is evidence indicating an
impact of genetic variation in 5-HTTLPR and other genes
affecting serotonergic functioning on amygdala and hippo-
campal volumes (35–37). A smaller number of studies indicate
that other neurotransmitters, for example, catecholamines
such as norepinephrine, may alsomodulate functioning in this
circuitry (20, 38, 39).

Reward Circuitry
A large body of neuroimaging in animals and, increasingly, in
human subjects highlights the role of ventral striatal and
predominantly medial prefrontal cortical circuitry in reward
processing, aswell as themodulating role of dopamine in this
circuitry (40). Rodent studies have elucidated awell-delineated
reward circuitry, centered on the ventral striatum/nucleus
accumbens, that receives excitatory afferents from the ventral
tegmental area dopamine system, which in turn modulates
ventral striatal activity during encoding of reward prediction
and the mediation of motivational state influences on reward
learning (41). The orbitofrontal cortex may exert a regulatory
role in reward signaling (42).

Human neuroimaging studies further highlight the role of
the ventral striatum (7, 43, 44) and the medial prefrontal
cortex, including the ventromedial prefrontal cortex, and
different anterior cingulate cortical regions (3, 13, 45, 46), in
reward processing. Themedial prefrontal cortex is proposed
to support modulation of visceral activity to affective stimuli
(46),while thepregenual anddorsal anteriorcingulatecortices
support reward regulation. Studies have reported that the
pregenual/dorsal anterior cingulate corticesareactivatedduring
choiceselectionforpossiblehighversus lowfuturegains(47,48),
risky decision making (49), and reward and loss expectancy
(50) and show robust functional coupling with the ventral
striatum to reward omission following expectation of large
rewards (51). Other prefrontal cortical regions, especially the
ventromedial prefrontal cortex, support encoding of reward
value (52, 53).

Further support for the key modulating role of dopamine
on rewardcircuitry comes fromhumanneuroimaging studies
reporting modulation of reward circuitry by genes affecting
dopamine transmission (54), associations between greater
ventral striatal activity and greater phasic ventral striatal
dopaminerelease inhealthyadults (55) (whichmayberelated
to impulsivity [56]), and dopamine release in the anterior
cingulate andmedial prefrontal cortices during a reward task
(57). Pharmacological functionalMRI (fMRI) studies indicate
that increasing levelsofdopamineandothermonoamineswith

administration of oral dextroamphetamine modulates ventral
striatal activity in healthy and depressed individuals (58), and
that levodopa modulates ventral striatal activity and reward-
related decision making in healthy adults (59). One study (60)
reported that the SNRI duloxetine led to increased ventral
striatal activity to reward anticipation in healthy volunteers,
although the study did not examine the relationship between
ventral striatal activity and dopamine release.

Otherneurotransmittersandhormonalsystemsalsomodulate
activity in reward circuitry (40). For example, glucocorticoids
modulate dopaminergic ventral striatal activity during re-
ward learning, and also modulate transmission of different
neuropeptides in the ventral striatum (61). GABA and gluta-
mate may also affect reward learning-related ventral striatal
activity (40).

Other Neuroimaging Modalities Examining Implicit
Emotion Regulation and Reward Circuits
Resting-state functional connectivity.Examination of resting-
state functional connectivity fMRI is based on thediscovery that
low-frequency (,∼0.1 Hz) blood-oxygen-level-dependent
fluctuations in distant but apparently functionally related
gray matter regions show strong correlations at rest (62, 63).
There is growing interest in resting-state functional connec-
tivity studies for several reasons. First, the use of “stimulus-
free” resting-state fMRIunburdensexperimentaldesign, subject
compliance, and training demands, making it attractive for
studies of clinical populations (64), although spontaneous
differences in subject behavior, arousal, and headmotion may
be confounders (65, 66). Second, in studies modeling both
high-resolution structural and functional connectivity in the
same individuals, resting-state functional connectivity strength,
persistence, and spatial statistics have been correlated with
large-scale anatomical structure, suggesting that a significant
component of the signal correlations reflects constraints of
anatomical connectivity (67). Other components are dynamic
and task-modulated (68) and spontaneously change at short
intervals (69, 70).

Multiple studies have demonstrated the ability of resting-
state fMRI to identify regions and networks of regions that
appear tobe functionally related, initiallyamongmotorregions
(62). Subsequent work has demonstrated functional connec-
tivity by resting-state fMRI among distributed association
regions that comprise multiple distributed networks, such as
the default network (71–73) and many other networks im-
portant to attention, memory, cognitive control, and affective
processing (74–77). Regarding neural circuits of particular
interest to this review, one study (78) elucidated the resting-
state functional connectivityof themajoramygdala subregions
(basolateral and centromedial), showing that the basolateral
amygdala was connected with sensory and higher-order cor-
tical regions, while the centromedial amygdalawas connected
with subcortical regions.

Arterial spin labeling. Arterial spin labeling is a noninvasive
perfusion MRI technique, used to quantify cerebral blood
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flow. Arterial spin labeling is based on the subtraction of two
consecutively acquired images: onewith andanotherwithout
magnetically labeledwater in arterial blood (79). Comparisons
between arterial spin labeling and H2

15O positron emission
tomography (PET) studies in healthy individuals demonstrate
significant positive correlations between measures of resting
cerebral blood flow derived from the two neuroimaging tech-
niques (80). Thus, arterial spin labeling is a promising MRI
technique to quantify cerebral bloodflowthat, unlikePET, does
not expose individuals to ionizing radiation.

Diffusion imaging.Diffusion imaging is anMRI-basedmethod
that canmeasure themacroscopic axonal organization in the
living brain (81). One of themost commonly reported outcome
measures in diffusion imaging analysis is fractional anisotropy,
ameasureof the degree anddirectionality of diffusion ofwater
molecules and, by inference, greater fractional anisotropy
suggesting the presence of more coherently bundled mye-
linated fibers in a given tract. Lower fractional anisotropy can
be due to changes in the density of the axons, axonal diameter,
myelination, coherence of the fiber tract, or localized water
content.Keywhitematter tractsconnectingprefrontal cortical
and subcortical regions in implicit emotion regulation and
rewardprocessingneural circuits include thecorpuscallosum,
the anterior cingulum, the uncinate fasciculus, and the su-
perior longitudinal fasciculus (82).

FUNCTIONAL AND GRAY MATTER STRUCTURAL
ABNORMALITIES IN IMPLICIT EMOTION
REGULATION AND REWARD CIRCUITS
IN DEPRESSION

Some of the most consistent findings regarding functional
abnormalities in implicit emotion regulation circuitry in
depressed individuals are abnormally elevated activity in the
amygdala and/or anterior cingulate cortex; reduced functional
connectivity between the amygdala and medial prefrontal
cortical regions in response tonegative emotional stimuli; and,
to a lesser extent, reduced activity in response to positive
emotional stimuli (83–96). Interestingly, there is some evi-
dence that abnormally reduced amygdala activity to positive
emotional stimuli may be associated with anhedonia in de-
pressed individuals (97). There are inconsistent findings of
either maintenance of abnormally elevated or abnormally
reduced activity in this circuit, especially in the amygdala,
during remission from depression (98–100). Longitudinal
neuroimaging studies,however, havereportedanormalization
of abnormally elevated activity in this circuit in response to
pharmacotherapy, especially treatment with SRIs (24, 86–88,
94, 96, 101, 102).

An increasing number of studies have reported functional
abnormalities in reward circuitry in depressed adults. De-
pressed adults have been reported to show abnormally ele-
vated rostral anterior cingulate cortical activity to previously
rewarding stimuli (103). Other studies of depression have
reported either elevated (104) or reduced (105) activity in the

pregenual and dorsal anterior cingulate cortices during ex-
pectancy of monetary reward, and a failure to deactivate the
pregenual anterior cingulate cortex during reward learning
(7). Furthermore, elevated ventral/pregenual anterior cingu-
late cortical activity, togetherwith reduced capacity tomaintain
ventral striatal activity to rewarding/positive emotional stimuli,
has been reported to be associated with greater anhedonia in
depressed adults (106, 107). Some studies have indicated sig-
nificantly reduced ventral striatal activity to rewarding stimuli
and during reward learning in depressed compared with
healthy adults (7, 10, 43, 108, 109), and increasedhabituation of
ventral striatal activity to reward (110). Others have not found
these associations (104). Additional evidence suggests asso-
ciations between greater anhedonia and diminished reward
learning in depressed individuals (111) and a normalization of
functional abnormalities in reward circuitry with successful
response to psychotherapy (112) (Figure 1).

While it is beyond the scope of this review to describe
findings in detail, an extensive literature has documented
abnormally reduced gray matter volume in regions over-
lapping with implicit emotion regulation and reward circuits
in depressed individuals, in particular in the ventromedial
prefrontal and anterior cingulate cortices and in subcortical
regions (113–115). Studies examining cortical thickness, an
index of neuronal integrity and arborization (116), have
reported 28% lower right cortical thickness in individuals at
high risk for depression (117).

Parallel Findings From Resting-State Functional
Connectivity, Arterial Spin Labeling, and Diffusion
Imaging Studies
There is a rapidly growing literature focusing on resting-state
connectivity in a variety of neural regions and networks in
depressed individuals. While there have been many in-
consistent findings, key findings in neural circuits sup-
porting implicit emotion regulation and reward processing
indicate either abnormally increased or abnormally decreased
resting-state connectivity between different anterior cin-
gulate cortical subregions and other prefrontal cortical
regions (118, 119); abnormally reduced resting-state con-
nectivity between subcortical regions, including between
the amygdala and the striatum, and between the anterior
cingulate and ventromedial prefrontal cortices (86, 118–122);
decreased resting-state connectivity between the subgenual
anterior cingulate cortex and cortical areas (123); and ab-
normal patterns of resting-state connectivity between striatal
and ventral prefrontal cortical regions and the whole brain
(124). Resting-state connectivity has also been reported to
be abnormally increased across three large-scale networks,
including the affective (subgenual) network, in depressed
individuals (125). Subcortical-anterior cingulate cortical
resting-state connectivity has been shown to increase after
SRI treatment (86), although SRIs and antidepressant
medications targeting catecholamine systems have been
shown to decrease resting-state connectivity in healthy
volunteers (126).
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A small number of studies have employed arterial spin
labeling to examine regional cerebral blood flow in implicit
emotion regulation neural circuitry in depression. A study
comparing six patients with chronic treatment-resistant
depression and six healthy subjects (127) showed significantly
greater resting cerebral blood flow in predominantly left-sided
medial prefrontal cortical and subcortical regions in the de-
pressed group. Another study (128) reported that depressed
individuals who responded to partial sleep deprivation had
greater baseline amygdala blood flow relative to individuals
whodidnotrespond,andthatcerebralbloodflowinthisregion
was reduced after treatment. In parallel, a study in healthy in-
dividuals (129) showed that a single oral dose of the SRI
citalopram was associated with reductions in cerebral blood
flow in implicit emotion regulation circuitry regions, including
the amygdala and the ventromedial prefrontal cortex.Another
study (130) found decreased perfusion in the prefrontal and
anterior cingulate cortices in depressed adult nonremitters
after a 6-month follow-up compared with healthy adults, but
didnotfindanyperfusiondifferences betweendepressed and
healthy adults at baseline.

A meta-analysis of diffusion imaging data in mood dis-
orders reported that 21 of 27 studies found significantly lower
fractional anisotropy in the left andright frontal and temporal
lobes or inwhitematter tracts connecting prefrontal cortical,
subcortical, and other cortical regions in individuals with
mood disorders relative to healthy volunteers (131). More
recent studies confirm this general pattern in individuals
with, and those at risk for, depression (132–146), although
there are some exceptions (147).

ELUCIDATING ABNORMALITIES IN IMPLICIT
EMOTION REGULATION AND REWARD CIRCUITS
IN DEPRESSION: A COMPARISON WITH
BIPOLAR DISORDER

Specific themes emerge from the studies described above.
These include, in implicit emotion regulation circuitry, ab-
normally elevated amygdala activity and reduced amygdala-
medial prefrontal cortical functional connectivity to negative
emotional stimuli in particular, paralleled by reductions in
gray matter volumes in subcortical and prefrontal cortical
regions. Resting-state functional connectivity studies indi-
cate abnormally reduced, but also abnormally increased,
resting-state functional connectivity between these regions,
while arterial spin labeling studies report patterns of pre-
dominantly abnormally increased resting blood flow in the
amygdala and inmedial prefrontal cortical regions. Diffusion
imaging findings indicate abnormally reduced fractional
anisotropy in white matter tracts connecting these regions.
These findings suggest compromised functioning in this cir-
cuitry, including insufficient regulation of subcortical struc-
tures suchas theamygdalabymedial prefrontal cortical regions,
especially to negative emotional stimuli. The smaller number
of findings in reward circuitry indicate abnormally elevated
activity in anterior cingulate cortical subregions, especially the

pregenual anterior cingulate cortex, during reward anticipation
and receipt, and abnormal, predominantly reduced, ventral
striatal activity during different stages of reward learning, al-
though there are inconsistent findings.

Further understanding of these findings can be facilitated
by comparing the functional and structural abnormalities in
these circuits in depressed individualswith those observed in
individuals with other mood disorders, in particular bipolar
disorder. For example, findings suggest distinguishable func-
tioning and structure in implicit emotion regulation circuitry
in depressed individuals with major depressive disorder com-
paredwith depressed individuals with bipolar disorder; studies
have also reported differential patterns of functional and
white matter structural abnormalities in this circuitry in the
two disorders (85, 148, 149; see reference 150 for a review).
These studies indicate greater amygdala activity in response to
negative than to positive emotional stimuli, predominantly left-
sided reductions in fractional anisotropy, and abnormally in-
creased left-sided ventromedial prefrontal cortical-amygdala
inverse functional connectivity to positive emotional stimuli in
depressed individuals with major depressive disorder. In con-
trast, in depressed individuals with bipolar disorder, findings
indicate bilateral reductions in both ventromedial prefrontal
cortical-amygdala functional connectivity and fractional an-
isotropy in underlying white matter tracts.

These studies suggest that the depression of major de-
pressive disorder, unlike bipolar depression, may be char-
acterizedmoreby left-sided thanbybilateral abnormalities in
implicit emotion regulation circuitry and underlying white
matter tracts. This may be associated with reduced left
prefrontal cortical activity during emotion processing in
individuals with major depressive disorder (151). Given the
putative role of the left prefrontal cortex in processing
approach-related emotions (152), this bias away from left
prefrontal cortical activity during emotion processing may
result in the well-documented attentional bias away from
positive and toward negative emotional stimuli (153) and
associated findings of abnormally increased amygdala (and
anterior cingulate cortical) activity to negative emotional
stimuli, described above. Links among these phenomena re-
quire further study, however. Bipolar disorder, by contrast,
maybe associatedwith bilateral dysregulationof the amygdala
by different prefrontal cortical regions and may result in the
emotional labilityandabnormallyelevatedamygdalaactivity to
both negative and positive emotional stimuli reported in
individuals with bipolar disorder (3). In support of this, one
recent study showed a positive correlation between the mag-
nitude of amygdala activity to positive emotional stimuli and
levelsof subthresholdmanicsymptoms indepressed individuals
with major depressive disorder (154).

Increasing evidence also suggests differential patterns of
abnormalities in reward circuitry in individuals with major
depressive disorder compared with those with bipolar
spectrumdisorders. For example, a recent reviewhighlighted,
in individuals with bipolar disorder across different mood
states and different bipolar subtypes, abnormally elevated
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activity in the left ventrolateral prefrontal cortex, a region
implicated in tracking reward value and arousal during an-
ticipation of potentially rewarding stimuli (155, 156), during
anticipation of uncertain reward or uncertain losses (3).

This pattern of abnormal neural activity is not reported in
individuals with current or remitted major depressive dis-
order (9, 157). Given the role of the left prefrontal cortex in
processing approach-related emotions (152) and reports of

TABLE 1. Summary of Key Neuroimaging Findings in Major Depressiona

Finding Implicit Emotion Regulation Circuitry Reward Circuitry

Neuroimaging abnormalities

Functional abnormalities Elevated amygdala activity to emotional (especially
negative) stimuli

Elevated anterior cingulate (rostral,
pregenual, dorsal subregions) cortical
activity to previously rewarding stimuli
and during reward expectancy

Elevated anterior cingulate cortical activity (all
regions) to negative and, to a lesser extent,
positive emotional stimuli *Elevated ventral/pregenual anterior

cingulate cortical activity and reduced
capacity to maintain ventral striatal
activity to rewarding stimuli associated
with greater anhedonia

Reduced amygdala-medial prefrontal cortical
functional connectivity to emotional stimuli

*Reduced ventral striatal activity to
rewarding stimuli and during reward
learning; increased habituation of
ventral striatal activity to reward

Normalization of abnormal activity by SRI
medications

Normalization of functional
abnormalities in reward circuitry with
successful response to psychotherapy

Gray and white matter structural
abnormalities

Reduced gray matter volume in ventromedial
prefrontal and anterior cingulate cortices and in
different subcortical regions

Reduced right cortical thickness
Resting-state functional

connectivity abnormalities
Multiple findings: elevated and reduced resting-
state connectivity in different anterior cingulate
cortical and other prefrontal cortical regions;
reduced resting-state connectivity in subcortical
regions; elevated subcortical-anterior cingulate
cortical resting-state connectivity after SRI
medication

Abnormal patterns of resting-state
connectivity between striatal and
ventral prefrontal cortical regions and
the whole brain

Arterial spin labeling
abnormalities

*Elevated subcortical (including amygdala) andmedial
prefrontal cortical resting cerebral blood flow

SRI medication may reduce resting cerebral blood
flow in amygdala and ventromedial prefrontal
cortex

Diffusion imaging
abnormalities

*Reduced fractional anisotropy in white matter
tracts connecting prefrontal cortical and
subcortical regions

Neuroimaging predictors of antidepressant treatment response

Functional neuroimaging
findings

Pretreatment hypermetabolism or greater activity
to emotional (especially negative) stimuli in the
anterior cingulate cortex (mainly the pregenual
subregion) predicts better response to SRI
medication

Pretreatment greater activity in the anterior
cingulate/medial prefrontal cortex predicts
negative treatment outcome to psychotherapy

Pretreatment greater amygdala activity to
emotional stimuli predicts better response to
different antidepressant medications and CBT
(but not to ketamine)

Other neuroimaging
modalities

Lower fractional anisotropy predicts response to
SRI medication (in late-life major depression);
elevatedarterial spin labelingmeasuresofcerebral
blood flow in the ventral anterior cingulate cortex
(and other regions) may be associated with
better response to SRI medication

a SRI5serotonin reuptake inhibitor; CBT5cognitive-behavioral therapy. An asterisk indicates some inconsistent findings.
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heightened reward sensitivity in individuals with bipolar
disorder (158), elevated left ventrolateral prefrontal cortical
activity may represent a neural marker of heightened reward
sensitivity that distinguishes bipolar disorder from major
depressive disorder.

Meta-analyses have also indicated reductions in hippo-
campal and striatal volumes in individuals with major de-
pressive disorder relative to thosewith bipolar disorder (113),
which may be associated with greater amygdala activity to
negative emotional stimuli, as described above, or may result
from different patterns of psychotropic use in the two dis-
orders (3); further study is needed. Findings from resting-
state studies directly comparing individuals with the different
disorders are few and are difficult to interpret (3). Overall,
findings thus suggest that bipolar disorder may be distin-
guished from major depressive disorder by patterns of func-
tion and white matter structure in the two neural circuits of
interest in this review.

Despite the advances that neuroimaging techniques have
provided in increasing our understanding of pathophysio-
logic processes in depression—specifically in implicit emotion
regulation and reward circuits—the extent to which neuro-
imaging measures reflecting these processes moderate (and
mediate) differential treatment response in individuals with
depressionremainsunderstudied.An increasingnumberof small
studies, however, have sought to identify neuroimaging pre-
dictors of treatment response in depression, as described in the
following sections.

NEUROIMAGING STUDIES OF PREDICTORS OF
ANTIDEPRESSANT RESPONSE

Functional Neuroimaging Studies
Functional neuroimaging studies that have identified pre-
dictors of treatment response in depression have focused
largely on the examination of implicit emotion regulation

FIGURE 2. Hypothesized Moderators or Mediators of Antidepressant Response in Depressiona
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a SRI5serotonin reuptake inhibitor; ACC5anterior cingulate cortex; mPFC5medial prefrontal cortex; vmPFC5ventromedial prefrontal cortex.
Findings from neuroimaging studies examining predictors of antidepressant treatment response in depression (8, 159–168) allow us to hy-
pothesize that greater pretreatment activity and resting blood flow in the medial prefrontal cortex and pregenual anterior cingulate cortex
implicit emotion regulation circuitry (panel A) may moderate response to SRIs versus nonserotonergic antidepressants. Changes in these
measures after commencing such treatmentsmaymediate response to SRIs. Fewstudieshaveexaminedhowmeasuresof structure and function
in reward circuitry (panel B) predict treatment response in depression. Given previous findings that greater activity and resting blood flow in
predominantly serotonergically modulated implicit emotion regulation circuitry regions (especially the medial prefrontal cortex and anterior
cingulate cortex) predict better response to SRIs, it is plausible to hypothesize that greater activity and resting blood flow in predominantly
dopaminergically modulated reward circuitry regions (especially the ventral striatum) may moderate response to dopaminergic versus non-
dopaminergic antidepressants in depression. Changes in these measures after commencing such treatments may mediate response to do-
paminergic antidepressants.
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neural circuitry and have included an SRImedication as the
treatment of study. These studies focused in particular on the
role of the anterior cingulate cortex and medial prefrontal
cortex (8). Themost strikingfinding from these studieswas an
associationbetweenhypermetabolism, asmeasuredwithPET,
or greater activity, measured with fMRI, in the pregenual
anterior cingulate cortex and better response to a single SRI.
No such association was found for response to the dopami-
nergicmedication bupropion (159). fMRI studies that examined
responses to emotional (predominantly negative emotional)
stimuli with fMRI found a similar association between greater
baseline activity in regions throughout the dorsal-ventral extent
of the anterior cingulate/medial prefrontal cortex and better
treatment response (predominantlybutnot exclusively toSRI
medications) in depression (160–162). Other studies reported
thatgreaterpretreatmentanteriorcingulate/medialprefrontal
cortical activity predicted a negative treatment outcome to
psychotherapy (163, 164).

fMRI studies of treatment response prediction in depression
also indicate an important role for the amygdala. One study of
cognitive-behavioral therapy (CBT) reported that greater pre-
treatment amygdala activity predicted better outcome (163),
while a study of the rapid antidepressant ketamine reported
the opposite effect (161). Another study reported that greater
amygdala activity to emotional facial expressions predicted
greater reduction in depressive symptoms 8 months after dif-
ferenttypesoftreatment(165).Otherstudiesusingnonemotional
stimuli provide further evidencepointing toward the roles of the
anterior cingulate/medial prefrontal cortex and the amygdala as
predictors of treatment response in depression. One study (166)
showed that, among other subcortical regions, left amygdala
activity during successful performance on an inhibitory control
task and pregenual anterior cingulate cortex activity during
unsuccessful inhibition (commission errors) predicted improve-
ment in depression symptoms after a 10-week treatment with
escitalopram. Another study, however, showed that a lower
responseat baseline in thedorsal anterior cingulatecortexwas
associated with an improved clinical outcomewith an 8-week
treatment with fluoxetine (167). Another study reported that
lower pretreatment activity in the ventrolateral prefrontal
cortex, a region implicated in more effortful, “voluntary” emo-
tion regulation (13), during attempts to down-regulate positive
emotion was associated with better response to either fluoxetine
or the SNRI venlafaxine in depressed adults (168).

Collectively, these studies suggest that measures of
metabolism/activity in the anterior cingulate and medial
prefrontal cortices (and, to a lesser extent, the amygdala)may
differ in patients who benefit from psychotherapy compared
with SRIs or dopaminergic antidepressants and that mea-
suring metabolism/activity in these areas may provide guid-
ance for future treatment choices.

Fewstudieshaveexamined theextent towhich function in
reward circuitry predicts antidepressant response. One small
study in youths reported that higher pretreatment ventral
striatal and lowermedial prefrontal cortical activity to reward
may be associated with greater reduction in anxiety after CBT

or combined treatment with CBT and an SRI (169), but the
study did not examine predictors of response to dopaminergic
antidepressants.Moreneuroimaging studies are thus required
to identify measures of reward circuitry function that may
predict response to dopaminergic antidepressants.

Other Neuroimaging Modalities
While the extent to which gray matter abnormalities may
predict or moderate treatment outcome in depression is
unclear (160, 170, 171) and the extent towhich these andother
structural measures maymediate treatment response remains
unexamined, a small number of studies suggest that other
neuroimagingmodalitiesmeasuring resting-state connectivity
and blood flow, cortical thickness, and white matter connec-
tivity may help identify predictors of treatment response. For
example, a study of late-life depression reported that response
to the SRI sertraline was associated with lower frontal frac-
tional anisotropy values (172). An arterial spin labeling study
reported increased perfusion in the right ventral anterior cin-
gulate cortex and in striatal, hippocampal, and cortical regions
in depressed patients who responded to at least two anti-
depressants (an SRI, venlafaxine, or a tricyclic antidepressant)
comparedwith nonresponders (173), findings that parallel earlier
PET studies of treatment response prediction in depression
(see above). One PET study reported that resting metabolism
in the right anterior insula, another region implicated in emo-
tion regulation and self processing, moderated response to CBT
compared with an SRI (174).

Limitations of Existing Neuroimaging Studies of
Predictors of Antidepressant Response
Neuroimaging studies can yield measures reflecting patho-
physiologic processes of depression, of which somemay help
predict treatment response (Table 1).Many studies, however,
used small samples and focused on identifying predictors of
successful treatment response, either to a single SRI or to
antidepressantmedication in general, rather than identifying
moderators andmediators of differential treatment response.
Most studies employed a single neuroimaging modality and
examinedpredominantlyoneneuralcircuitof interest,namely,
amygdala-anterior cingulate/medial prefrontal cortical cir-
cuitry supporting implicit emotion regulation. Findings from
some of these studies resulted in development of a novel deep
brain stimulation treatment for the 30% of individuals whose
depression is treatment resistant (175). Overall, however, the
necessarily narrow focus of these smaller-scale neuroimaging
studies has, unfortunately, resulted in limited translation of
otherwise very interesting findings into widespread clinical
practice.

FUTURE DIRECTIONS FOR NEUROIMAGING
STUDIES OF TREATMENT RESPONSE PREDICTION
IN DEPRESSION

Clinical studies have traditionally made a choice between
using large samples to testwell-definedhypotheses andusing
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smaller samples to allow in-depth assessment for hypothesis
generating. The majority of neuroimaging studies, however,
have focused on small samples with few assessments. Neu-
roimaging studies with large sample sizes are thus required
for sufficient power to test key hypotheses and to subdivide
data into training and testing data sets for first identifying
and subsequently establishing moderators and mediators
of treatment response. Furthermore, identifying, as early as
possibleafter commencing treatment,measures thatmoderate
andmediate treatment responseremainsacrucially important,
but as yet unmet, need in clinical practice. Few studies have
included neuroimaging assessments in early phases of treat-
ment, and, of those that have (6, 176), nonehaveexaminedhow
such early changes in neuroimaging measures moderated or
mediated subsequent treatment response. The inclusion of
baseline and early-stage (e.g., 1 week after treatment onset)
neuroimaging assessments and of more than one treatment
in clinical trial platforms will help identify moderators and
early mediators of differential treatment response, as opposed
to focusing on predictors of successful response to a single
treatment or to treatment in general. Additionally, while pre-
vious neuroimaging findings suggested a neural signature of
placebo response (177), no studies have examined the extent to
which neuroimagingmeasures act asmoderators ormediators
ofdifferential response toplacebocomparedwithdrug.Future
studies should do so.

Studies would also benefit from examiningmore than one
neural circuit, using multiple neuroimaging modalities, to
examine theextent towhichrelationships amongmeasuresof
the functional and structural integrity of parallel yet dis-
tributedneural circuitsmaymoderate andmediate differential
treatment response in depressed individuals. Here, the choice
of medications in treatment platforms could include antidepres-
sants, atvariousdosages, thatwouldbeexpectedtodifferentially
affect function in serotonergically modulated implicit emotion
regulation and dopaminergically modulated reward processing
neural circuits (Figure 2). These measures could be integrated
with electrophysiological, neurocognitive, and clinical mea-
sures, using, for example, factor analysis, to identify key
brain-behavior relationships that may moderate and mediate
differential treatment response in depression (178, 179). Fi-
nally, as in studies of cardiovascular disease, asthma, breast
cancer, lung cancer, multiple sclerosis, macular degeneration,
and other medical illnesses (180–184), future studies should
identify personalized biosignatures developed from several
clinical and biological markers reflecting underlying patho-
physiologic processes. The combination of these approaches is
more likely to be successful and to result in significant im-
provements in shorter- and longer-term clinical and func-
tional outcome for the largenumber of individualswho suffer
from depressive illnesses.
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