
932	 volume 36   number 10   OCTOBER 2018   nature biotechnology

Amit Etkin is at the Department of Psychiatry 
and Behavioral Sciences and Stanford 
Neurosciences Institute, Stanford University, 
Stanford, California, USA, and at the Veterans 
Affairs Palo Alto Healthcare System and 
the Sierra Pacific Mental Illness, Research, 
Education, and Clinical Center (MIRECC),  
Palo Alto, California, USA.  
e-mail:  amitetkin@stanford.edu

days of continuous ECoG recordings (Fig. 1).  
Recording electrodes were implanted in 
regions such as the amygdala, hippocampus, 
orbitofrontal cortex and anterior cingulate 
cortex—limbic and paralimbic regions that 
are known to respond to a variety of emotional 
cues—as well as a limited selection of nonlim-
bic regions.

The authors developed a mood-decoding 
machine-learning model for each of the seven 
study participants. The models were trained on 
questionnaire data and ECoG recordings from 
each individual to identify variations in the  
neural data that corresponded to changes in 
the subject’s mood. To validate the approach,  
the authors performed leave-one-out cross-
validation, in which the reported mood at one 
time point was omitted from the training set, 
and the remaining data were used to predict 

time scales of minutes to months, mood  
measurements cannot provide the high- 
precision measurements possible in motor-
control decoding.

In their new study, Sani et al.1 started by 
measuring invasively recorded electrocor-
ticography (ECoG) signals from multiple 
regions across the brains of patients admitted 
to the hospital for monitoring of their epilepsy. 
Typically, information from such recordings is 
used to localize epileptic foci to guide seizure-
reducing interventions, such as tissue resection 
or implantation of neurostimulation devices. 
The authors built on extensive literature 
assessing momentary changes in mood and 
extended these approaches to patients under-
going ECoG recordings. Patients filled out a 
questionnaire designed to capture their short-
term mood fluctuations every ~12 hours for 6 

The subjective, shifting nature of mood has 
long proved recalcitrant to brain-imaging tech-
nologies. In this issue, Sani et al.1 overcome this 
roadblock for the first time with a report on 
a machine-learning model capable of predict-
ing mood using only electrical signals from 
the brain. Their findings open an exciting new 
door into the possibilities of decoding mood-
related neural signals in humans.

For many years, recordings of brain activ-
ity have been used to decode hidden internal 
states, but this research has focused almost 
exclusively on motor control. In a typical 
experiment, machine learning is used to asso-
ciate signals from invasive or noninvasive neu-
ral recordings with an organism’s intention to 
move a part of the body. Models trained in 
this way can predict a person’s intended move-
ments from measured brain activity alone, and 
their accuracy is determined by how well the 
algorithm recapitulates the observed move-
ments. This work has led to rapid advances 
in brain/machine-interface technology and in 
understanding how the brain encodes motor 
control2,3. However, the question of whether 
a similar approach could be used to decode 
mood—a more complex and ill-defined state—
has remained unanswered.

Mood is particularly challenging because 
it is a hard-to-define psychological construct. 
There is no ground truth against which compu-
tational models learned from brain recordings 
can be reliably indexed, and the only access 
to mood is through individual self-reporting 
by questionnaire-guided introspection. In 
addition, although mood can vary across 
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Figure 1   Experimental design and analysis approach. Multifocal invasive neural recordings  
at multiple time points in humans were aligned with the administration of questionnaire-based  
mood measurements and used to decode neural signals that tracked hourly mood fluctuations  
in the participants. 
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the missing measurement. This procedure 
was repeated for all time points. Model perfor-
mance was assessed by calculation of the error 
between the predicted and observed values, 
and the models succeeded to various degrees, 
explaining 12–65% of the mood fluctuation.

Given the large amount of recorded neu-
ral data and the relatively limited frequency 
of mood sampling, a critical element to the 
success of this study was the nature of the 
mood-decoding machine-learning algorithm. 
The model is an example of latent-space 
models, which are increasingly being used in 
neuroscience4,5. In such models, which may 
take many forms, the data are reduced to cap-
ture the most important prediction-relevant 
low-dimensional representations of high-
dimensional and potentially very noisy raw 
signal. The authors’ success in decoding mood 
was thus attributable both to their novel use 
of repeated mood measurements in epilepsy 
patients and to a decoding model optimized 
for parsimony given the sparse nature of the 
mood data.

Several important findings emerge from this 
work. First, decoding was found to rely cen-
trally on limbic/paralimbic regions rather than 
regions outside the limbic system, confirming 
previous knowledge about the effects of these 
regions on mood. Second, the decoder models 
were found to be stable across time points for 
the individual. Moreover, once decoded, the 
neural signals corresponding to their model of 
mood fluctuations could be tracked throughout 
the recording period, yielding a potential ongo-
ing neural correlate of mood (Fig. 1). However, 
the same analyses on neural data drawn from 
periods outside those corresponding to when 
participants filled out the questionnaires did 
not yield successful decoding. Thus, the neural 
signals might indicate mood only when mea-
sured while individuals are engaged in filling 
out questionnaires (i.e., might be state depen-
dent), or the brain–mood relationship may 
be very temporally precise, probably because 
of rapid fluctuations in either the mood or  
neural signals. The results may also reflect 

overfitting of the predictive models. Overfitting 
is a particular concern, given the authors’ use of 
leave-one-out cross-validation (which inflates 
model accuracy) and the limited number of 
mood samples per patient. Future replica-
tion will be needed to understand whether  
overfitting  occurred.

Although the work of Sani et al.1 is highly 
innovative, it raises several points for fur-
ther consideration. The clinical relevance of 
the observed hourly fluctuations in mood is 
unknown, and the relationship of these fluctua-
tions to mood-related psychopathology is like-
wise unclear. Psychology distinguishes between 
emotions, which are transient and typically 
stimulus triggered, and moods, which are more 
prolonged and are driven by external cues and 
internal states. Where exactly the questionnaire 
used in this study falls in measuring emotions 
or mood is uncertain. Moreover, on the aggre-
gate, the authors’ model explained only 32% 
of the variability in mood across the 6 days of 
recordings, leaving most of the mood-related 
signal in the questionnaires unexplained.

The authors note that decoding in all indi-
viduals involved signals from limbic/paralimbic 
regions, and not regions outside this network. 
However, the specific brain regions responsible 
for the mood-decoding signals differed sharply 
between individuals, even within the broadly 
defined limbic network. For example, the orb-
itofrontal cortex was present in only four of 
seven individuals. The hippocampus and dor-
sal cingulate regions were present in only two 
of seven individuals. Given that each of these 
regions engages in very different neural com-
putations, the degree of interindividual vari-
ability in mood-decoding regions was striking. 
Thus, an optimal neural mood ‘signature’ may 
have to be decoded separately for each person. 
The extent to which this specificity is real ver-
sus due to model overfitting is also difficult to 
know at this point, but should become more 
clear in replication studies.

Although the nonlimbic regions examined 
by the authors did not support decoding, the 
authors studied very few such regions (primarily 

the temporal cortex). Given the broad cortical 
interconnections of the limbic system and that 
cortical regions in this system contributed more 
heavily to decoding than deep brain regions, 
an exciting question is whether conventional 
scalp electroencephalography recordings might 
be used to decode mood in a manner similar to 
the invasive recordings used here.

From a therapeutic perspective, understand-
ing how neural signals change in response to 
mood may lead to new treatments for neuro
psychiatric disorders. If the approach of Sani 
et al.1 can be generalized to other recording 
and mood-measurement methods, one might 
imagine, for example, that such signals could 
provide the afferent limb to a closed-loop neu-
rostimulation approach for modifying mood. 
In such a scenario, after the mood states of 
patients with a condition such as depression 
had been decoded, signals that trigger a stable 
and more positive mood state could be pro-
vided. Similar decoding of other subjective 
experiences could lead to a better understand-
ing of other emotions, including those central 
to both psychiatric conditions and normative 
emotional experience. Such work could help 
decipher the uniqueness of subjective experi-
ence and whether its neural correlates differ 
as a function of factors such as a psychiatric 
diagnosis, certain medications or even age.

Although initial insights in any domain of 
investigation often raise more questions than 
they answer, as is the case here, the authors 
deserve to be congratulated on path-breaking 
work that will no doubt inspire many others 
in the field.
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